Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import uuid
|
| 2 |
import chromadb
|
|
|
|
| 3 |
from langchain.vectorstores import Chroma
|
| 4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 5 |
from langchain.retrievers import ContextualCompressionRetriever
|
|
@@ -7,8 +8,15 @@ from langchain.retrievers.document_compressors import CrossEncoderReranker
|
|
| 7 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 8 |
import gradio as gr
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Initialize embedding model
|
| 11 |
-
embedding_model = HuggingFaceEmbeddings(
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Initialize ChromaDB client and collection
|
| 14 |
chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
|
@@ -19,7 +27,10 @@ vectorstore = Chroma(
|
|
| 19 |
)
|
| 20 |
|
| 21 |
# Initialize reranker
|
| 22 |
-
reranker = HuggingFaceCrossEncoder(
|
|
|
|
|
|
|
|
|
|
| 23 |
compressor = CrossEncoderReranker(model=reranker, top_n=5)
|
| 24 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 10}) # Retrieve 2k initially
|
| 25 |
compression_retriever = ContextualCompressionRetriever(
|
|
|
|
| 1 |
import uuid
|
| 2 |
import chromadb
|
| 3 |
+
import torch
|
| 4 |
from langchain.vectorstores import Chroma
|
| 5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 6 |
from langchain.retrievers import ContextualCompressionRetriever
|
|
|
|
| 8 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
+
# Set device to GPU if available, else CPU
|
| 12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
print(f"Using device: {device}")
|
| 14 |
+
|
| 15 |
# Initialize embedding model
|
| 16 |
+
embedding_model = HuggingFaceEmbeddings(
|
| 17 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 18 |
+
model_kwargs={"device": device}
|
| 19 |
+
)
|
| 20 |
|
| 21 |
# Initialize ChromaDB client and collection
|
| 22 |
chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
# Initialize reranker
|
| 30 |
+
reranker = HuggingFaceCrossEncoder(
|
| 31 |
+
model_name="BAAI/bge-reranker-base",
|
| 32 |
+
model_kwargs={"device": device}
|
| 33 |
+
)
|
| 34 |
compressor = CrossEncoderReranker(model=reranker, top_n=5)
|
| 35 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 10}) # Retrieve 2k initially
|
| 36 |
compression_retriever = ContextualCompressionRetriever(
|