Spaces:
Sleeping
Sleeping
File size: 12,528 Bytes
1602deb 05deaf1 1602deb 05deaf1 1602deb dc3fba1 77085dc 1ea690b 05deaf1 7b036e8 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 182177b 05deaf1 e0a7220 05deaf1 1602deb 77085dc 1ea690b b028259 1602deb 05deaf1 dc3fba1 05deaf1 182177b 05deaf1 e0a7220 182177b 05deaf1 a966ebf 05deaf1 a966ebf 05deaf1 a966ebf 05deaf1 a966ebf 05deaf1 a966ebf 05deaf1 a966ebf 05deaf1 a966ebf 05deaf1 a966ebf 05deaf1 a966ebf 05deaf1 a966ebf af19614 05deaf1 7b036e8 05deaf1 7b036e8 05deaf1 1602deb dc3fba1 77085dc dc3fba1 1602deb 77085dc b028259 77085dc dc3fba1 77085dc dc3fba1 77085dc dc3fba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
from fastapi import FastAPI, Body, UploadFile, File
import torch
import os
from pathlib import Path
from fastapi.middleware.cors import CORSMiddleware
from transformers import AutoTokenizer, AutoModelForTokenClassification, AutoModelForSequenceClassification, AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from pydantic import BaseModel
import tempfile
import hashlib
import json
from typing import Optional
import httpx # Add this import for HTTP requests
from dotenv import load_dotenv
load_dotenv()
# Define input model
class TextInput(BaseModel):
text: str
# Initialize FastAPI
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
# Vous pouvez restreindre ceci à votre frontend spécifique
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Get base directory
base_dir = Path(__file__).parent.absolute()
# Your Hugging Face Hub username
HF_USERNAME = "YassineJedidi" # Replace with your actual username
# Définition des entités valides pour chaque type
entites_valides = {
"Tâche": {"TITRE", "DELAI", "PRIORITE"},
"Événement": {"TITRE", "DATE_HEURE"},
}
# Try to load models from Hugging Face Hub
try:
print("Loading models from Hugging Face Hub")
# Model repositories on Hugging Face
ner_model_repo = f"{HF_USERNAME}/plangenieai-ner"
type_model_repo = f"{HF_USERNAME}/plangenieai-type"
print(f"Loading NER model (and tokenizer) from: {ner_model_repo}")
print(f"Loading type model (and tokenizer) from: {type_model_repo}")
# Load NER model and tokenizer from the same repo
ner_tokenizer = AutoTokenizer.from_pretrained(ner_model_repo)
ner_model = AutoModelForTokenClassification.from_pretrained(ner_model_repo)
# Load type model and tokenizer from the same repo
type_tokenizer = AutoTokenizer.from_pretrained(type_model_repo)
type_model = AutoModelForSequenceClassification.from_pretrained(
type_model_repo)
except Exception as e:
print(f"Error loading models from Hugging Face Hub: {e}")
# Fallback to local files if available
try:
# Convert paths to strings with forward slashes
ner_model_path = str(base_dir / "models" /
"plangenieai-ner").replace("\\", "/")
type_model_path = str(base_dir / "models" /
"plangenieai-type").replace("\\", "/")
print(f"Falling back to local models")
print(f"Loading NER model (and tokenizer) from: {ner_model_path}")
print(f"Loading type model (and tokenizer) from: {type_model_path}")
# Load NER model and tokenizer from local files
ner_tokenizer = AutoTokenizer.from_pretrained(
ner_model_path, local_files_only=True)
ner_model = AutoModelForTokenClassification.from_pretrained(
ner_model_path, local_files_only=True)
# Load type model and tokenizer from local files
type_tokenizer = AutoTokenizer.from_pretrained(
type_model_path, local_files_only=True)
type_model = AutoModelForSequenceClassification.from_pretrained(
type_model_path, local_files_only=True)
except Exception as e:
print(f"Error loading local models: {e}")
# Fallback to base CamemBERT model from HuggingFace Hub
print("Falling back to base CamemBERT model from HuggingFace Hub")
ner_tokenizer = AutoTokenizer.from_pretrained("camembert-base")
ner_model = AutoModelForTokenClassification.from_pretrained(
"camembert-base")
type_tokenizer = AutoTokenizer.from_pretrained("camembert-base")
type_model = AutoModelForSequenceClassification.from_pretrained(
"camembert-base")
# Helper functions for tokenization
def clean_text(text):
if isinstance(text, str):
return text.strip()
return ""
def find_all_occurrences(text, substring):
start_positions = []
start = 0
if not substring or not isinstance(substring, str):
return start_positions
text_lower = text.lower()
substring_lower = substring.lower()
while True:
start = text_lower.find(substring_lower, start)
if start == -1:
break
is_beginning = start == 0 or not text_lower[start-1].isalnum()
is_ending = (start + len(substring_lower) == len(text_lower) or
not text_lower[start + len(substring_lower)].isalnum())
if is_beginning and is_ending:
original_substring = text[start:start + len(substring_lower)]
start_positions.append(
(start, start + len(substring_lower), original_substring))
start += 1
return start_positions
def tokenize_text_with_positions(text, tokenizer):
"""Tokenize text and return tokens with their positions"""
# Use CamemBERT tokenizer
tokens = tokenizer.tokenize(text)
# Clean tokens and get positions
clean_tokens = []
token_positions = []
current_pos = 0
for token in tokens:
# Clean the token (remove special characters from tokenizer)
clean_token = token.replace('▁', '').replace('##', '')
clean_tokens.append(clean_token)
if clean_token:
pos = text.find(clean_token, current_pos)
if pos != -1:
token_positions.append((pos, pos + len(clean_token)))
current_pos = pos + len(clean_token)
else:
token_positions.append(
(current_pos, current_pos + len(clean_token)))
current_pos += len(clean_token)
else:
token_positions.append((current_pos, current_pos))
return clean_tokens, token_positions
# Set device (CPU or GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Add Groq API key and URL
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
GROQ_API_URL = "https://api.groq.com/openai/v1/audio/transcriptions"
ner_model = ner_model.to(device)
type_model = type_model.to(device)
# Retrieve label mappings
id2label = ner_model.config.id2label
id2type = type_model.config.id2label
# Cache directory for transcriptions
CACHE_DIR = Path("transcription_cache")
CACHE_DIR.mkdir(exist_ok=True)
def get_cache_path(audio_data: bytes) -> Path:
"""Generate a cache file path based on the audio content hash."""
hash_md5 = hashlib.md5(audio_data).hexdigest()
return CACHE_DIR / f"{hash_md5}.json"
def get_cached_transcription(audio_data: bytes) -> Optional[str]:
"""Get cached transcription if it exists."""
cache_path = get_cache_path(audio_data)
if cache_path.exists():
try:
with open(cache_path, 'r') as f:
return json.load(f)['transcription']
except Exception:
return None
return None
def save_transcription_to_cache(audio_data: bytes, transcription: str):
"""Save transcription to cache."""
cache_path = get_cache_path(audio_data)
try:
with open(cache_path, 'w') as f:
json.dump({'transcription': transcription}, f)
except Exception:
pass # Silently fail if cache write fails
@app.get("/")
def root():
return {"message": "FastAPI NLP Model is running!"}
@app.post("/predict-type/")
async def predict_type(input_data: TextInput):
text = input_data.text
inputs = type_tokenizer(text, return_tensors="pt",
truncation=True, padding=True).to(device)
with torch.no_grad():
outputs = type_model(**inputs)
predicted_class_id = outputs.logits.argmax().item()
predicted_type = id2type[predicted_class_id]
confidence = torch.softmax(outputs.logits, dim=1).max().item()
return {"type": predicted_type, "confidence": confidence}
@app.post("/extract-entities/")
async def extract_entities(input_data: TextInput):
text = input_data.text
# Use the model's tokenizer for tokenization
clean_tokens, token_positions = tokenize_text_with_positions(
text, ner_tokenizer)
# Tokenize for NER prediction
inputs = ner_tokenizer(clean_tokens, is_split_into_words=True,
return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
outputs = ner_model(**inputs)
predictions = outputs.logits.argmax(dim=2)
entities = {}
current_entity = None
current_start = None
current_end = None
word_ids = inputs.word_ids(0)
for idx, word_idx in enumerate(word_ids):
if word_idx is None:
continue
if idx > 0 and word_ids[idx-1] == word_idx:
continue
prediction = predictions[0, idx].item()
predicted_label = id2label[prediction]
if predicted_label.startswith("B-"):
if current_entity is not None:
entity_type = current_entity[2:]
if entity_type not in entities:
entities[entity_type] = [text[current_start:current_end]]
current_entity = None
current_start = None
current_end = None
current_entity = predicted_label
current_start, current_end = token_positions[word_idx]
elif predicted_label.startswith("I-") and current_entity and predicted_label[2:] == current_entity[2:]:
# Extend the end position to include this token
_, token_end = token_positions[word_idx]
current_end = token_end
else:
if current_entity is not None:
entity_type = current_entity[2:]
if entity_type not in entities:
entities[entity_type] = [text[current_start:current_end]]
current_entity = None
current_start = None
current_end = None
if current_entity is not None:
entity_type = current_entity[2:]
if entity_type not in entities:
entities[entity_type] = [text[current_start:current_end]]
# Only keep the first detection, do nothing if already present
return {"entities": entities}
@app.post("/analyze-text/")
async def analyze_text(input_data: TextInput):
type_result = await predict_type(input_data)
text_type = type_result["type"]
confidence = type_result["confidence"]
raw_entities = (await extract_entities(input_data))["entities"]
# Filtrage des entités selon le type détecté
allowed = entites_valides.get(text_type, set())
filtered_entities = {k: v for k, v in raw_entities.items() if k in allowed}
return {
"type": text_type,
"confidence": confidence,
"entities": filtered_entities
}
@app.post("/transcribe/")
async def transcribe_audio(file: UploadFile = File(...)):
try:
# Read the file content
audio_data = await file.read()
# Check cache first
cached_transcription = get_cached_transcription(audio_data)
if cached_transcription:
return {"transcription": cached_transcription, "cached": True}
# Save audio to a temporary file (Groq expects multipart/form-data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_data)
tmp_path = tmp.name
# Prepare request to Groq API
headers = {"Authorization": f"Bearer {GROQ_API_KEY}"}
data = {
"model": "whisper-large-v3-turbo",
"response_format": "json"
}
files = {
"file": (os.path.basename(tmp_path), open(tmp_path, "rb"), "audio/wav")
}
async with httpx.AsyncClient() as client:
response = await client.post(GROQ_API_URL, headers=headers, data=data, files=files, timeout=60)
# Clean up temp file
os.remove(tmp_path)
if response.status_code == 200:
result = response.json()
transcription = result.get("text", "")
# Save to cache
save_transcription_to_cache(audio_data, transcription)
return {"transcription": transcription, "cached": False}
else:
print(f"Groq API error: {response.status_code} {response.text}")
return {"error": "Transcription failed", "details": response.text}
except Exception as e:
print(f"Transcription error: {str(e)}")
return {"error": "Transcription failed", "details": str(e)}
|