|
|
import streamlit as st |
|
|
from modules.image_utils import load_and_preprocess_image |
|
|
from modules.model_utils import generate_image_embeddings |
|
|
from modules.caption_utils import match_captions |
|
|
|
|
|
def image_captioning(image_path, candidate_captions): |
|
|
inputs, processor = load_and_preprocess_image(image_path) |
|
|
image_features, clip_model = generate_image_embeddings(inputs) |
|
|
best_captions, similarities = match_captions(image_features, candidate_captions, clip_model, processor) |
|
|
return best_captions, similarities |
|
|
|
|
|
st.title("AI Image Caption Recommender with CLIP") |
|
|
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) |
|
|
|
|
|
candidate_captions = ["Trees, Travel and Tea!", "A refreshing beverage.", ...] |
|
|
|
|
|
if uploaded_image is not None: |
|
|
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) |
|
|
best_captions, similarities = image_captioning(uploaded_image, candidate_captions) |
|
|
st.write("### Top Captions") |
|
|
for idx, (caption, similarity) in enumerate(zip(best_captions[:5], similarities[:5])): |
|
|
st.write(f"{idx+1}. {caption} (Similarity: {similarity:.4f})") |