import streamlit as st from modules.image_utils import load_and_preprocess_image from modules.model_utils import generate_image_embeddings from modules.caption_utils import match_captions def image_captioning(image_path, candidate_captions): inputs, processor = load_and_preprocess_image(image_path) image_features, clip_model = generate_image_embeddings(inputs) best_captions, similarities = match_captions(image_features, candidate_captions, clip_model, processor) return best_captions, similarities def load_captions(file_path): with open(file_path, 'r') as file: captions = [line.strip() for line in file.readlines()] return captions st.title("AI Image Caption Recommender with CLIP") uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) candidate_captions = load_captions('caption.txt') if uploaded_image is not None: st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) best_captions, similarities = image_captioning(uploaded_image, candidate_captions) st.write("### Top Captions") for idx, (caption, similarity) in enumerate(zip(best_captions[:5], similarities[:5])): st.write(f"{idx+1}. {caption} (Similarity: {similarity:.4f})")