Spaces:
Running
Running
First
Browse files- .gitattributes +35 -35
- README.md +102 -14
- app.py +44 -0
- best_deberta_base.bin +3 -0
- model.py +19 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,35 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,14 +1,102 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom: yellow
|
| 5 |
-
colorTo: green
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 6.0.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: apache-2.0
|
| 11 |
-
short_description: Multi-label emotion detection from text
|
| 12 |
-
---
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Emotion Classifier – T3 2025 Project
|
| 3 |
+
emoji: 🎭
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 6.0.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: Multi-label emotion detection from text
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# Emotion Classifier – DeBERTa-v3-base
|
| 15 |
+
|
| 16 |
+
This Space hosts a **multi-label emotion classification model** developed as part of the **T3-2025 Deep Learning & GenAI Project** at IIT Madras.
|
| 17 |
+
|
| 18 |
+
The model predicts **five emotions** from English text:
|
| 19 |
+
- **Anger**
|
| 20 |
+
- **Fear**
|
| 21 |
+
- **Joy**
|
| 22 |
+
- **Sadness**
|
| 23 |
+
- **Surprise**
|
| 24 |
+
|
| 25 |
+
[](https://huggingface.co/spaces/abhaynb92/22f1000829-t32025)
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## 🔧 Model Overview
|
| 30 |
+
|
| 31 |
+
This project fine-tunes the transformer model
|
| 32 |
+
**`microsoft/deberta-v3-base`**
|
| 33 |
+
for multi-label emotion classification.
|
| 34 |
+
|
| 35 |
+
### Key Features:
|
| 36 |
+
- Multi-label classification
|
| 37 |
+
- Independent sigmoid outputs
|
| 38 |
+
- **BCEWithLogitsLoss**
|
| 39 |
+
- Independent threshold tuning
|
| 40 |
+
- Stratified train-validation split
|
| 41 |
+
- Tokenization with DeBERTa tokenizer
|
| 42 |
+
- Inference served via Gradio
|
| 43 |
+
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
## 📊 Training Summary
|
| 47 |
+
|
| 48 |
+
- **Dataset size:** ~6800 labeled samples
|
| 49 |
+
- **Average text length:** ~15 tokens
|
| 50 |
+
- **Model:** DeBERTa-v3-base
|
| 51 |
+
- **Epochs:** 5
|
| 52 |
+
- **Optimizer:** AdamW
|
| 53 |
+
- **Loss Function:** BCEWithLogitsLoss
|
| 54 |
+
- **Metric:** Macro F1-score
|
| 55 |
+
- **Best Val Macro F1:** **0.83+**
|
| 56 |
+
- Kaggle test performance further improved after threshold smoothing
|
| 57 |
+
|
| 58 |
+
This model contributed to the **Kaggle Performance (KP)** component worth **30 marks** in the DL & GenAI course.
|
| 59 |
+
|
| 60 |
+
---
|
| 61 |
+
|
| 62 |
+
## 🚀 Deployment Details
|
| 63 |
+
|
| 64 |
+
This HuggingFace Space runs on:
|
| 65 |
+
|
| 66 |
+
- **CPU Basic** (free)
|
| 67 |
+
- **Gradio** as UI
|
| 68 |
+
- **PyTorch** for inference
|
| 69 |
+
- Direct loading of `best_deberta_base.bin` weights
|
| 70 |
+
|
| 71 |
+
The Gradio app takes text input and returns a dictionary of emotion probabilities.
|
| 72 |
+
|
| 73 |
+
Example:
|
| 74 |
+
|
| 75 |
+
Input:
|
| 76 |
+
"I can’t believe this happened!"
|
| 77 |
+
|
| 78 |
+
Output:
|
| 79 |
+
{
|
| 80 |
+
"anger": 0.14,
|
| 81 |
+
"fear": 0.31,
|
| 82 |
+
"joy": 0.05,
|
| 83 |
+
"sadness": 0.09,
|
| 84 |
+
"surprise": 0.82
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
---
|
| 89 |
+
|
| 90 |
+
## 🗂️ Project Structure
|
| 91 |
+
|
| 92 |
+
app.py # Gradio UI + inference logic
|
| 93 |
+
model.py # PyTorch model architecture
|
| 94 |
+
best_deberta_base.bin # Fine-tuned model weights
|
| 95 |
+
requirements.txt # Python dependencies
|
| 96 |
+
README.md # This documentation
|
| 97 |
+
|
| 98 |
+
app.py # Gradio UI + inference logic
|
| 99 |
+
model.py # PyTorch model architecture
|
| 100 |
+
best_deberta_base.bin # Fine-tuned model weights
|
| 101 |
+
requirements.txt # Python dependencies
|
| 102 |
+
README.md # This documentation
|
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
+
from model import EmotionClassifier
|
| 5 |
+
|
| 6 |
+
MODEL_NAME = "microsoft/deberta-v3-base"
|
| 7 |
+
LABELS = ["anger", "fear", "joy", "sadness", "surprise"]
|
| 8 |
+
|
| 9 |
+
# Load tokenizer
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 11 |
+
|
| 12 |
+
# Load model
|
| 13 |
+
model = EmotionClassifier(MODEL_NAME)
|
| 14 |
+
model.load_state_dict(torch.load("best_deberta_base.bin", map_location="cpu"))
|
| 15 |
+
model.eval()
|
| 16 |
+
|
| 17 |
+
def predict_emotions(text):
|
| 18 |
+
inputs = tokenizer(
|
| 19 |
+
text,
|
| 20 |
+
return_tensors="pt",
|
| 21 |
+
truncation=True,
|
| 22 |
+
padding=True,
|
| 23 |
+
max_length=256
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
logits = model(
|
| 28 |
+
inputs["input_ids"],
|
| 29 |
+
inputs["attention_mask"]
|
| 30 |
+
)
|
| 31 |
+
probs = torch.sigmoid(logits).squeeze().tolist()
|
| 32 |
+
|
| 33 |
+
# Return label: probability
|
| 34 |
+
return {label: float(prob) for label, prob in zip(LABELS, probs)}
|
| 35 |
+
|
| 36 |
+
iface = gr.Interface(
|
| 37 |
+
fn=predict_emotions,
|
| 38 |
+
inputs=gr.Textbox(lines=3, label="Enter text"),
|
| 39 |
+
outputs=gr.Label(label="Emotion Probabilities"),
|
| 40 |
+
title="Emotion Classifier (DeBERTa-v3-base)",
|
| 41 |
+
description="Predicts emotions: anger, fear, joy, sadness, surprise."
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
iface.launch()
|
best_deberta_base.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7771265ce676543f5160034f3baaee5e4a44de872e9a744bcc9ebf07a6a9530d
|
| 3 |
+
size 735429146
|
model.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import AutoModel
|
| 4 |
+
|
| 5 |
+
class EmotionClassifier(nn.Module):
|
| 6 |
+
def __init__(self, model_name, num_labels=5):
|
| 7 |
+
super().__init__()
|
| 8 |
+
self.transformer = AutoModel.from_pretrained(model_name)
|
| 9 |
+
hidden_size = self.transformer.config.hidden_size
|
| 10 |
+
self.classifier = nn.Linear(hidden_size, num_labels)
|
| 11 |
+
|
| 12 |
+
def forward(self, input_ids, attention_mask):
|
| 13 |
+
outputs = self.transformer(
|
| 14 |
+
input_ids=input_ids,
|
| 15 |
+
attention_mask=attention_mask
|
| 16 |
+
)
|
| 17 |
+
cls_embeddings = outputs.last_hidden_state[:, 0, :]
|
| 18 |
+
logits = self.classifier(cls_embeddings)
|
| 19 |
+
return logits
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers==4.36.2
|
| 3 |
+
gradio
|