import torch import torch.nn as nn from transformers import AutoModel class EmotionClassifier(nn.Module): def __init__(self, model_name, num_labels=5): super().__init__() self.transformer = AutoModel.from_pretrained(model_name) hidden_size = self.transformer.config.hidden_size self.classifier = nn.Linear(hidden_size, num_labels) def forward(self, input_ids, attention_mask): outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask ) cls_embeddings = outputs.last_hidden_state[:, 0, :] logits = self.classifier(cls_embeddings) return logits