import joblib import pandas as pd from flask import Flask, request, jsonify # Initialize Flask app with a name churn_predictor_api = Flask("Customer Churn Predictor") # Load the trained churn prediction model model = joblib.load("churn_prediction_model_v1_0.joblib") # Define a route for the home page @churn_predictor_api.get('/') def home(): return "Welcome to the Customer Churn Prediction API!" # Define an endpoint to predict churn for a single customer @churn_predictor_api.post('/v1/customer') def predict_churn(): # Get JSON data from the request customer_data = request.get_json() # Extract relevant customer features from the input data sample = { 'CreditScore': customer_data['CreditScore'], 'Geography': customer_data['Geography'], 'Age': customer_data['Age'], 'Tenure': customer_data['Tenure'], 'Balance': customer_data['Balance'], 'NumOfProducts': customer_data['NumOfProducts'], 'HasCrCard': customer_data['HasCrCard'], 'IsActiveMember': customer_data['IsActiveMember'], 'EstimatedSalary': customer_data['EstimatedSalary'] } # Convert the extracted data into a DataFrame input_data = pd.DataFrame([sample]) # Make a churn prediction using the trained model prediction = model.predict(input_data).tolist()[0] # Map prediction result to a human-readable label prediction_label = "churn" if prediction == 1 else "not churn" # Return the prediction as a JSON response return jsonify({'Prediction': prediction_label}) # Define an endpoint to predict churn for a batch of customers @churn_predictor_api.post('/v1/customerbatch') def predict_churn_batch(): # Get the uploaded CSV file from the request file = request.files['file'] # Read the file into a DataFrame input_data = pd.read_csv(file) # Make predictions for the batch data and convert raw predictions into a readable format predictions = [ 'Churn' if x == 1 else "Not Churn" for x in model.predict(input_data.drop("CustomerId",axis=1)).tolist() ] cust_id_list = input_data.CustomerId.values.tolist() output_dict = dict(zip(cust_id_list, predictions)) return output_dict # Run the Flask app in debug mode if __name__ == '__main__': app.run(debug=True)