Spaces:
Sleeping
Sleeping
| import requests | |
| import streamlit as st | |
| import pandas as pd | |
| st.title("Customer Churn Prediction") | |
| # Batch Prediction | |
| st.subheader("Online Prediction") | |
| # Input fields for customer data | |
| CustomerID = st.number_input("Customer ID", min_value=10000000, max_value=99999999) | |
| CreditScore = st.number_input("Credit Score (customer's credit score)", min_value=300, max_value=900, value=650) | |
| Geography = st.selectbox("Geography (country where the customer resides)", ["France", "Germany", "Spain"]) | |
| Age = st.number_input("Age (customer's age in years)", min_value=18, max_value=100, value=30) | |
| Tenure = st.number_input("Tenure (number of years the customer has been with the bank)", value=12) | |
| Balance = st.number_input("Account Balance (customer’s account balance)", min_value=0.0, value=10000.0) | |
| NumOfProducts = st.number_input("Number of Products (number of products the customer has with the bank)", min_value=1, value=1) | |
| HasCrCard = st.selectbox("Has Credit Card?", ["Yes", "No"]) | |
| IsActiveMember = st.selectbox("Is Active Member?", ["Yes", "No"]) | |
| EstimatedSalary = st.number_input("Estimated Salary (customer’s estimated salary)", min_value=0.0, value=50000.0) | |
| customer_data = { | |
| 'CreditScore': CreditScore, | |
| 'Geography': Geography, | |
| 'Age': Age, | |
| 'Tenure': Tenure, | |
| 'Balance': Balance, | |
| 'NumOfProducts': NumOfProducts, | |
| 'HasCrCard': 1 if HasCrCard == "Yes" else 0, | |
| 'IsActiveMember': 1 if IsActiveMember == "Yes" else 0, | |
| 'EstimatedSalary': EstimatedSalary | |
| } | |
| if st.button("Predict", type='primary'): | |
| response = requests.post("https://aenewton42-flaskbackendchurn.hf.space/v1/customer", json=customer_data) # enter user name and space name before running the cell | |
| if response.status_code == 200: | |
| result = response.json() | |
| churn_prediction = result["Prediction"] # Extract only the value | |
| st.write(f"Based on the information provided, the customer with ID {CustomerID} is likely to {churn_prediction}.") | |
| else: | |
| st.error("Error in API request") | |
| # Batch Prediction | |
| st.subheader("Batch Prediction") | |
| file = st.file_uploader("Upload CSV file", type=["csv"]) | |
| if file is not None: | |
| if st.button("Predict for Batch", type='primary'): | |
| response = requests.post("https://aenewton42-flaskbackendchurn.hf.space/v1/customerbatch", files={"file": file}) # enter user name and space name before running the cell | |
| if response.status_code == 200: | |
| result = response.json() | |
| st.header("Batch Prediction Results") | |
| st.write(result) | |
| else: | |
| st.error("Error in API request") | |