Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- Dockerfile +8 -13
- app.py +55 -0
- requirements.txt +3 -3
Dockerfile
CHANGED
|
@@ -1,21 +1,16 @@
|
|
|
|
|
| 1 |
FROM python:3.9-slim
|
| 2 |
|
|
|
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
curl \
|
| 8 |
-
software-properties-common \
|
| 9 |
-
git \
|
| 10 |
-
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
-
|
| 12 |
-
COPY requirements.txt ./
|
| 13 |
-
COPY src/ ./src/
|
| 14 |
|
|
|
|
| 15 |
RUN pip3 install -r requirements.txt
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
| 20 |
|
| 21 |
-
|
|
|
|
| 1 |
+
# Use a minimal base image with Python 3.9 installed
|
| 2 |
FROM python:3.9-slim
|
| 3 |
|
| 4 |
+
# Set the working directory inside the container to /app
|
| 5 |
WORKDIR /app
|
| 6 |
|
| 7 |
+
# Copy all files from the current directory on the host to the container's /app directory
|
| 8 |
+
COPY . .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Install Python dependencies listed in requirements.txt
|
| 11 |
RUN pip3 install -r requirements.txt
|
| 12 |
|
| 13 |
+
# Define the command to run the Streamlit app on port 8501 and make it accessible externally
|
| 14 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
|
|
|
|
| 15 |
|
| 16 |
+
# NOTE: Disable XSRF protection for easier external access in order to make batch predictions
|
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
st.title("Customer Churn Prediction")
|
| 6 |
+
|
| 7 |
+
# Batch Prediction
|
| 8 |
+
st.subheader("Online Prediction")
|
| 9 |
+
|
| 10 |
+
# Input fields for customer data
|
| 11 |
+
CustomerID = st.number_input("Customer ID", min_value=10000000, max_value=99999999)
|
| 12 |
+
CreditScore = st.number_input("Credit Score (customer's credit score)", min_value=300, max_value=900, value=650)
|
| 13 |
+
Geography = st.selectbox("Geography (country where the customer resides)", ["France", "Germany", "Spain"])
|
| 14 |
+
Age = st.number_input("Age (customer's age in years)", min_value=18, max_value=100, value=30)
|
| 15 |
+
Tenure = st.number_input("Tenure (number of years the customer has been with the bank)", value=12)
|
| 16 |
+
Balance = st.number_input("Account Balance (customer’s account balance)", min_value=0.0, value=10000.0)
|
| 17 |
+
NumOfProducts = st.number_input("Number of Products (number of products the customer has with the bank)", min_value=1, value=1)
|
| 18 |
+
HasCrCard = st.selectbox("Has Credit Card?", ["Yes", "No"])
|
| 19 |
+
IsActiveMember = st.selectbox("Is Active Member?", ["Yes", "No"])
|
| 20 |
+
EstimatedSalary = st.number_input("Estimated Salary (customer’s estimated salary)", min_value=0.0, value=50000.0)
|
| 21 |
+
|
| 22 |
+
customer_data = {
|
| 23 |
+
'CreditScore': CreditScore,
|
| 24 |
+
'Geography': Geography,
|
| 25 |
+
'Age': Age,
|
| 26 |
+
'Tenure': Tenure,
|
| 27 |
+
'Balance': Balance,
|
| 28 |
+
'NumOfProducts': NumOfProducts,
|
| 29 |
+
'HasCrCard': 1 if HasCrCard == "Yes" else 0,
|
| 30 |
+
'IsActiveMember': 1 if IsActiveMember == "Yes" else 0,
|
| 31 |
+
'EstimatedSalary': EstimatedSalary
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
if st.button("Predict", type='primary'):
|
| 35 |
+
response = requests.post("https://aenewton42-flask_backend_churn.hf.space/v1/customer", json=customer_data) # enter user name and space name before running the cell
|
| 36 |
+
if response.status_code == 200:
|
| 37 |
+
result = response.json()
|
| 38 |
+
churn_prediction = result["Prediction"] # Extract only the value
|
| 39 |
+
st.write(f"Based on the information provided, the customer with ID {CustomerID} is likely to {churn_prediction}.")
|
| 40 |
+
else:
|
| 41 |
+
st.error("Error in API request")
|
| 42 |
+
|
| 43 |
+
# Batch Prediction
|
| 44 |
+
st.subheader("Batch Prediction")
|
| 45 |
+
|
| 46 |
+
file = st.file_uploader("Upload CSV file", type=["csv"])
|
| 47 |
+
if file is not None:
|
| 48 |
+
if st.button("Predict for Batch", type='primary'):
|
| 49 |
+
response = requests.post("https://aenewton42-flask_backend_churn.hf.space/v1/customerbatch", files={"file": file}) # enter user name and space name before running the cell
|
| 50 |
+
if response.status_code == 200:
|
| 51 |
+
result = response.json()
|
| 52 |
+
st.header("Batch Prediction Results")
|
| 53 |
+
st.write(result)
|
| 54 |
+
else:
|
| 55 |
+
st.error("Error in API request")
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
streamlit
|
|
|
|
| 1 |
+
pandas==2.2.2
|
| 2 |
+
requests==2.28.1
|
| 3 |
+
streamlit==1.43.2
|