aenewton42 commited on
Commit
857c67d
·
verified ·
1 Parent(s): 027ee35

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Dockerfile +8 -13
  2. app.py +55 -0
  3. requirements.txt +3 -3
Dockerfile CHANGED
@@ -1,21 +1,16 @@
 
1
  FROM python:3.9-slim
2
 
 
3
  WORKDIR /app
4
 
5
- RUN apt-get update && apt-get install -y \
6
- build-essential \
7
- curl \
8
- software-properties-common \
9
- git \
10
- && rm -rf /var/lib/apt/lists/*
11
-
12
- COPY requirements.txt ./
13
- COPY src/ ./src/
14
 
 
15
  RUN pip3 install -r requirements.txt
16
 
17
- EXPOSE 8501
18
-
19
- HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
20
 
21
- ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
 
1
+ # Use a minimal base image with Python 3.9 installed
2
  FROM python:3.9-slim
3
 
4
+ # Set the working directory inside the container to /app
5
  WORKDIR /app
6
 
7
+ # Copy all files from the current directory on the host to the container's /app directory
8
+ COPY . .
 
 
 
 
 
 
 
9
 
10
+ # Install Python dependencies listed in requirements.txt
11
  RUN pip3 install -r requirements.txt
12
 
13
+ # Define the command to run the Streamlit app on port 8501 and make it accessible externally
14
+ CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
 
15
 
16
+ # NOTE: Disable XSRF protection for easier external access in order to make batch predictions
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import streamlit as st
3
+ import pandas as pd
4
+
5
+ st.title("Customer Churn Prediction")
6
+
7
+ # Batch Prediction
8
+ st.subheader("Online Prediction")
9
+
10
+ # Input fields for customer data
11
+ CustomerID = st.number_input("Customer ID", min_value=10000000, max_value=99999999)
12
+ CreditScore = st.number_input("Credit Score (customer's credit score)", min_value=300, max_value=900, value=650)
13
+ Geography = st.selectbox("Geography (country where the customer resides)", ["France", "Germany", "Spain"])
14
+ Age = st.number_input("Age (customer's age in years)", min_value=18, max_value=100, value=30)
15
+ Tenure = st.number_input("Tenure (number of years the customer has been with the bank)", value=12)
16
+ Balance = st.number_input("Account Balance (customer’s account balance)", min_value=0.0, value=10000.0)
17
+ NumOfProducts = st.number_input("Number of Products (number of products the customer has with the bank)", min_value=1, value=1)
18
+ HasCrCard = st.selectbox("Has Credit Card?", ["Yes", "No"])
19
+ IsActiveMember = st.selectbox("Is Active Member?", ["Yes", "No"])
20
+ EstimatedSalary = st.number_input("Estimated Salary (customer’s estimated salary)", min_value=0.0, value=50000.0)
21
+
22
+ customer_data = {
23
+ 'CreditScore': CreditScore,
24
+ 'Geography': Geography,
25
+ 'Age': Age,
26
+ 'Tenure': Tenure,
27
+ 'Balance': Balance,
28
+ 'NumOfProducts': NumOfProducts,
29
+ 'HasCrCard': 1 if HasCrCard == "Yes" else 0,
30
+ 'IsActiveMember': 1 if IsActiveMember == "Yes" else 0,
31
+ 'EstimatedSalary': EstimatedSalary
32
+ }
33
+
34
+ if st.button("Predict", type='primary'):
35
+ response = requests.post("https://aenewton42-flask_backend_churn.hf.space/v1/customer", json=customer_data) # enter user name and space name before running the cell
36
+ if response.status_code == 200:
37
+ result = response.json()
38
+ churn_prediction = result["Prediction"] # Extract only the value
39
+ st.write(f"Based on the information provided, the customer with ID {CustomerID} is likely to {churn_prediction}.")
40
+ else:
41
+ st.error("Error in API request")
42
+
43
+ # Batch Prediction
44
+ st.subheader("Batch Prediction")
45
+
46
+ file = st.file_uploader("Upload CSV file", type=["csv"])
47
+ if file is not None:
48
+ if st.button("Predict for Batch", type='primary'):
49
+ response = requests.post("https://aenewton42-flask_backend_churn.hf.space/v1/customerbatch", files={"file": file}) # enter user name and space name before running the cell
50
+ if response.status_code == 200:
51
+ result = response.json()
52
+ st.header("Batch Prediction Results")
53
+ st.write(result)
54
+ else:
55
+ st.error("Error in API request")
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
- altair
2
- pandas
3
- streamlit
 
1
+ pandas==2.2.2
2
+ requests==2.28.1
3
+ streamlit==1.43.2