import requests import streamlit as st import pandas as pd st.title("Customer Churn Prediction") # Batch Prediction st.subheader("Online Prediction") # Input fields for customer data CustomerID = st.number_input("Customer ID", min_value=10000000, max_value=99999999) CreditScore = st.number_input("Credit Score (customer's credit score)", min_value=300, max_value=900, value=650) Geography = st.selectbox("Geography (country where the customer resides)", ["France", "Germany", "Spain"]) Age = st.number_input("Age (customer's age in years)", min_value=18, max_value=100, value=30) Tenure = st.number_input("Tenure (number of years the customer has been with the bank)", value=12) Balance = st.number_input("Account Balance (customer’s account balance)", min_value=0.0, value=10000.0) NumOfProducts = st.number_input("Number of Products (number of products the customer has with the bank)", min_value=1, value=1) HasCrCard = st.selectbox("Has Credit Card?", ["Yes", "No"]) IsActiveMember = st.selectbox("Is Active Member?", ["Yes", "No"]) EstimatedSalary = st.number_input("Estimated Salary (customer’s estimated salary)", min_value=0.0, value=50000.0) customer_data = { 'CreditScore': CreditScore, 'Geography': Geography, 'Age': Age, 'Tenure': Tenure, 'Balance': Balance, 'NumOfProducts': NumOfProducts, 'HasCrCard': 1 if HasCrCard == "Yes" else 0, 'IsActiveMember': 1 if IsActiveMember == "Yes" else 0, 'EstimatedSalary': EstimatedSalary } if st.button("Predict", type='primary'): response = requests.post("https://aenewton42-flaskbackendchurn.hf.space/v1/customer", json=customer_data) # enter user name and space name before running the cell if response.status_code == 200: result = response.json() churn_prediction = result["Prediction"] # Extract only the value st.write(f"Based on the information provided, the customer with ID {CustomerID} is likely to {churn_prediction}.") else: st.error("Error in API request") # Batch Prediction st.subheader("Batch Prediction") file = st.file_uploader("Upload CSV file", type=["csv"]) if file is not None: if st.button("Predict for Batch", type='primary'): response = requests.post("https://aenewton42-flaskbackendchurn.hf.space/v1/customerbatch", files={"file": file}) # enter user name and space name before running the cell if response.status_code == 200: result = response.json() st.header("Batch Prediction Results") st.write(result) else: st.error("Error in API request")