Spaces:
Running
Running
File size: 8,443 Bytes
0a3c558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
"""
Agent functionality for interactive code generation with follow-up questions and task planning.
"""
import os
from typing import Dict, List, Optional, Tuple, Generator
import gradio as gr
from .models import (
get_inference_client, get_real_model_id, history_to_messages,
history_to_chatbot_messages, strip_thinking_tags
)
from .deploy import generation_code
def agent_generate_with_questions(
query: Optional[str],
setting: Dict[str, str],
history: List,
current_model: Dict,
language: str,
provider: str,
profile: Optional[gr.OAuthProfile] = None,
token: Optional[gr.OAuthToken] = None,
max_questions: int = 3
) -> Generator[Tuple[List, List], None, None]:
"""
Agent that asks follow-up questions, creates a task list, and generates code.
Args:
query: Initial user request
setting: System settings
history: Conversation history
current_model: Selected model configuration
language: Target programming language/framework
provider: Model provider
profile: User OAuth profile
token: User OAuth token
max_questions: Maximum number of follow-up questions to ask
Yields:
Tuples of (history, chatbot_messages) at each step
"""
if not query or not query.strip():
return
# Initialize history with user's initial query
current_history = history + [[query, ""]]
# Step 1: Agent analyzes the request and asks follow-up questions
agent_system_prompt = """You are a helpful coding assistant that helps users clarify their requirements before generating code.
Your task is to:
1. Analyze the user's request
2. Ask 1-3 clarifying questions to better understand their needs
3. Focus on important details like:
- Target audience and use case
- Specific features or functionality needed
- Design preferences (colors, layout, style)
- Data sources or APIs to integrate
- Performance or scalability requirements
Output ONLY the questions, numbered 1, 2, 3, etc. Keep questions concise and focused.
Do not generate code yet - just ask the questions."""
# Get LLM client
client = get_inference_client(current_model.get('model_id', 'Qwen/Qwen2.5-Coder-32B-Instruct'), provider)
model_id = get_real_model_id(current_model.get('model_id', 'Qwen/Qwen2.5-Coder-32B-Instruct'))
# Prepare messages for follow-up questions
messages = [
{'role': 'system', 'content': agent_system_prompt},
{'role': 'user', 'content': f"User wants to create: {query}\n\nLanguage/Framework: {language}\n\nAsk clarifying questions."}
]
# Generate follow-up questions
questions_response = ""
try:
# Try to use the client (works for both InferenceClient and OpenAI-compatible clients)
stream = client.chat.completions.create(
model=model_id,
messages=messages,
temperature=0.7,
max_tokens=500,
stream=True
)
for chunk in stream:
if hasattr(chunk.choices[0].delta, 'content') and chunk.choices[0].delta.content:
questions_response += chunk.choices[0].delta.content
# Update display in real-time
temp_history = current_history[:-1] + [[query, f"π€ **Analyzing your request...**\n\n{questions_response}"]]
yield (temp_history, history_to_chatbot_messages(temp_history))
except Exception as e:
error_msg = f"β Error asking follow-up questions: {str(e)}"
temp_history = current_history[:-1] + [[query, error_msg]]
yield (temp_history, history_to_chatbot_messages(temp_history))
return
# Update history with agent's questions
current_history[-1][1] = f"π€ **Let me ask you a few questions to better understand your needs:**\n\n{questions_response}\n\nπ¬ Please answer these questions in your next message."
yield (current_history, history_to_chatbot_messages(current_history))
# Wait for user response (this will be handled by the UI)
# For now, we'll return and let the user respond, then continue in the next call
return
def agent_process_answers_and_generate(
user_answers: str,
original_query: str,
questions: str,
setting: Dict[str, str],
history: List,
current_model: Dict,
language: str,
provider: str,
profile: Optional[gr.OAuthProfile] = None,
token: Optional[gr.OAuthToken] = None,
code_output=None,
history_output=None,
history_state=None
) -> Generator:
"""
Process user's answers, create task list, and generate code.
Args:
user_answers: User's responses to the questions
original_query: Original user request
questions: Agent's questions
setting: System settings
history: Conversation history
current_model: Selected model configuration
language: Target programming language/framework
provider: Model provider
profile: User OAuth profile
token: User OAuth token
code_output: Code output component
history_output: History output component
history_state: History state
Yields:
Updates to code output and history
"""
# Step 2: Create task list based on answers
task_planning_prompt = f"""Based on the user's request and their answers, create a detailed task list for implementing the solution.
Original Request: {original_query}
Questions Asked:
{questions}
User's Answers:
{user_answers}
Create a numbered task list with 5-8 specific, actionable tasks. Each task should be clear and focused.
Start with "π **Task List:**" and then list the tasks."""
client = get_inference_client(current_model.get('model_id', 'Qwen/Qwen2.5-Coder-32B-Instruct'), provider)
model_id = get_real_model_id(current_model.get('model_id', 'Qwen/Qwen2.5-Coder-32B-Instruct'))
messages = [
{'role': 'system', 'content': 'You are a helpful coding assistant creating a task plan.'},
{'role': 'user', 'content': task_planning_prompt}
]
# Generate task list
task_list = ""
try:
stream = client.chat.completions.create(
model=model_id,
messages=messages,
temperature=0.7,
max_tokens=800,
stream=True
)
for chunk in stream:
if hasattr(chunk.choices[0].delta, 'content') and chunk.choices[0].delta.content:
task_list += chunk.choices[0].delta.content
# Update display
temp_history = history + [[user_answers, f"π **Creating task list...**\n\n{task_list}"]]
yield {
history_state: temp_history,
history_output: history_to_chatbot_messages(temp_history)
}
except Exception as e:
error_msg = f"β Error creating task list: {str(e)}"
temp_history = history + [[user_answers, error_msg]]
yield {
history_state: temp_history,
history_output: history_to_chatbot_messages(temp_history)
}
return
# Update history with task list
updated_history = history + [[user_answers, task_list]]
yield {
history_state: updated_history,
history_output: history_to_chatbot_messages(updated_history)
}
# Step 3: Generate code based on refined requirements
refined_query = f"""{original_query}
Additional Requirements (based on follow-up):
{user_answers}
Task List:
{task_list}
Please implement the above requirements following the task list."""
# Add a message indicating code generation is starting
code_gen_start_history = updated_history + [["[System]", "π **Starting code generation based on your requirements...**"]]
yield {
history_state: code_gen_start_history,
history_output: history_to_chatbot_messages(code_gen_start_history)
}
# Use the existing generation_code function for actual code generation
# We need to pass the refined query and updated history
for result in generation_code(
refined_query,
setting,
updated_history,
current_model,
language,
provider,
profile,
token,
code_output,
history_output,
history_state
):
yield result
|