Spaces:
Running
Running
File size: 55,365 Bytes
715bb35 84be902 715bb35 84be902 78016c6 715bb35 84be902 78016c6 715bb35 84be902 715bb35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 |
"""
Documentation management for Gradio, ComfyUI, and FastRTC.
Handles fetching, caching, and updating documentation from llms.txt files.
"""
import os
import requests
import re
from datetime import datetime, timedelta
from typing import Optional
from .config import (
GRADIO_LLMS_TXT_URL, GRADIO_DOCS_CACHE_FILE, GRADIO_DOCS_LAST_UPDATE_FILE,
GRADIO_DOCS_UPDATE_ON_APP_UPDATE, _gradio_docs_content, _gradio_docs_last_fetched,
COMFYUI_LLMS_TXT_URL, COMFYUI_DOCS_CACHE_FILE, COMFYUI_DOCS_LAST_UPDATE_FILE,
COMFYUI_DOCS_UPDATE_ON_APP_UPDATE, _comfyui_docs_content, _comfyui_docs_last_fetched,
FASTRTC_LLMS_TXT_URL, FASTRTC_DOCS_CACHE_FILE, FASTRTC_DOCS_LAST_UPDATE_FILE,
FASTRTC_DOCS_UPDATE_ON_APP_UPDATE, _fastrtc_docs_content, _fastrtc_docs_last_fetched
)
from . import prompts
def fetch_gradio_docs() -> Optional[str]:
"""Fetch the latest Gradio documentation from llms.txt"""
try:
response = requests.get(GRADIO_LLMS_TXT_URL, timeout=10)
response.raise_for_status()
return response.text
except Exception as e:
print(f"Warning: Failed to fetch Gradio docs from {GRADIO_LLMS_TXT_URL}: {e}")
return None
def fetch_comfyui_docs() -> Optional[str]:
"""Fetch the latest ComfyUI documentation from llms.txt"""
try:
response = requests.get(COMFYUI_LLMS_TXT_URL, timeout=10)
response.raise_for_status()
return response.text
except Exception as e:
print(f"Warning: Failed to fetch ComfyUI docs from {COMFYUI_LLMS_TXT_URL}: {e}")
return None
def fetch_fastrtc_docs() -> Optional[str]:
"""Fetch the latest FastRTC documentation from llms.txt"""
try:
response = requests.get(FASTRTC_LLMS_TXT_URL, timeout=10)
response.raise_for_status()
return response.text
except Exception as e:
print(f"Warning: Failed to fetch FastRTC docs from {FASTRTC_LLMS_TXT_URL}: {e}")
return None
def filter_problematic_instructions(content: str) -> str:
"""Filter out problematic instructions that cause LLM to stop generation prematurely"""
if not content:
return content
# List of problematic phrases that cause early termination when LLM encounters ``` in user code
problematic_patterns = [
r"Output ONLY the code inside a ``` code block, and do not include any explanations or extra text",
r"output only the code inside a ```.*?``` code block",
r"Always output only the.*?code.*?inside.*?```.*?```.*?block",
r"Return ONLY the code inside a.*?```.*?``` code block",
r"Do NOT add the language name at the top of the code output",
r"do not include any explanations or extra text",
r"Always output only the.*?code blocks.*?shown above, and do not include any explanations",
r"Output.*?ONLY.*?code.*?inside.*?```.*?```",
r"Return.*?ONLY.*?code.*?inside.*?```.*?```",
r"Generate.*?ONLY.*?code.*?inside.*?```.*?```",
r"Provide.*?ONLY.*?code.*?inside.*?```.*?```",
]
# Remove problematic patterns
filtered_content = content
for pattern in problematic_patterns:
# Use case-insensitive matching
filtered_content = re.sub(pattern, "", filtered_content, flags=re.IGNORECASE | re.DOTALL)
# Clean up any double newlines or extra whitespace left by removals
filtered_content = re.sub(r'\n\s*\n\s*\n', '\n\n', filtered_content)
filtered_content = re.sub(r'^\s+', '', filtered_content, flags=re.MULTILINE)
return filtered_content
def load_cached_gradio_docs() -> Optional[str]:
"""Load cached Gradio documentation from file"""
try:
if os.path.exists(GRADIO_DOCS_CACHE_FILE):
with open(GRADIO_DOCS_CACHE_FILE, 'r', encoding='utf-8') as f:
return f.read()
except Exception as e:
print(f"Warning: Failed to load cached Gradio docs: {e}")
return None
def save_gradio_docs_cache(content: str):
"""Save Gradio documentation to cache file"""
try:
with open(GRADIO_DOCS_CACHE_FILE, 'w', encoding='utf-8') as f:
f.write(content)
with open(GRADIO_DOCS_LAST_UPDATE_FILE, 'w', encoding='utf-8') as f:
f.write(datetime.now().isoformat())
except Exception as e:
print(f"Warning: Failed to save Gradio docs cache: {e}")
def load_comfyui_docs_cache() -> Optional[str]:
"""Load ComfyUI documentation from cache file"""
try:
if os.path.exists(COMFYUI_DOCS_CACHE_FILE):
with open(COMFYUI_DOCS_CACHE_FILE, 'r', encoding='utf-8') as f:
return f.read()
except Exception as e:
print(f"Warning: Failed to load cached ComfyUI docs: {e}")
return None
def save_comfyui_docs_cache(content: str):
"""Save ComfyUI documentation to cache file"""
try:
with open(COMFYUI_DOCS_CACHE_FILE, 'w', encoding='utf-8') as f:
f.write(content)
with open(COMFYUI_DOCS_LAST_UPDATE_FILE, 'w', encoding='utf-8') as f:
f.write(datetime.now().isoformat())
except Exception as e:
print(f"Warning: Failed to save ComfyUI docs cache: {e}")
def load_fastrtc_docs_cache() -> Optional[str]:
"""Load FastRTC documentation from cache file"""
try:
if os.path.exists(FASTRTC_DOCS_CACHE_FILE):
with open(FASTRTC_DOCS_CACHE_FILE, 'r', encoding='utf-8') as f:
return f.read()
except Exception as e:
print(f"Warning: Failed to load cached FastRTC docs: {e}")
return None
def save_fastrtc_docs_cache(content: str):
"""Save FastRTC documentation to cache file"""
try:
with open(FASTRTC_DOCS_CACHE_FILE, 'w', encoding='utf-8') as f:
f.write(content)
with open(FASTRTC_DOCS_LAST_UPDATE_FILE, 'w', encoding='utf-8') as f:
f.write(datetime.now().isoformat())
except Exception as e:
print(f"Warning: Failed to save FastRTC docs cache: {e}")
def get_last_update_time() -> Optional[datetime]:
"""Get the last update time from file"""
try:
if os.path.exists(GRADIO_DOCS_LAST_UPDATE_FILE):
with open(GRADIO_DOCS_LAST_UPDATE_FILE, 'r', encoding='utf-8') as f:
return datetime.fromisoformat(f.read().strip())
except Exception as e:
print(f"Warning: Failed to read last update time: {e}")
return None
def should_update_gradio_docs() -> bool:
"""Check if Gradio documentation should be updated"""
# Only update if we don't have cached content (first run or cache deleted)
return not os.path.exists(GRADIO_DOCS_CACHE_FILE)
def should_update_comfyui_docs() -> bool:
"""Check if ComfyUI documentation should be updated"""
# Only update if we don't have cached content (first run or cache deleted)
return not os.path.exists(COMFYUI_DOCS_CACHE_FILE)
def should_update_fastrtc_docs() -> bool:
"""Check if FastRTC documentation should be updated"""
# Only update if we don't have cached content (first run or cache deleted)
return not os.path.exists(FASTRTC_DOCS_CACHE_FILE)
def force_update_gradio_docs():
"""
Force an update of Gradio documentation (useful when app is updated).
To manually refresh docs, you can call this function or simply delete the cache file:
rm .gradio_docs_cache.txt && restart the app
"""
global _gradio_docs_content, _gradio_docs_last_fetched
print("π Forcing Gradio documentation update...")
latest_content = fetch_gradio_docs()
if latest_content:
# Filter out problematic instructions that cause early termination
filtered_content = filter_problematic_instructions(latest_content)
_gradio_docs_content = filtered_content
_gradio_docs_last_fetched = datetime.now()
save_gradio_docs_cache(filtered_content)
update_gradio_system_prompts()
print("β
Gradio documentation updated successfully")
return True
else:
print("β Failed to update Gradio documentation")
return False
def force_update_comfyui_docs():
"""
Force an update of ComfyUI documentation (useful when app is updated).
To manually refresh docs, you can call this function or simply delete the cache file:
rm .comfyui_docs_cache.txt && restart the app
"""
global _comfyui_docs_content, _comfyui_docs_last_fetched
print("π Forcing ComfyUI documentation update...")
latest_content = fetch_comfyui_docs()
if latest_content:
# Filter out problematic instructions that cause early termination
filtered_content = filter_problematic_instructions(latest_content)
_comfyui_docs_content = filtered_content
_comfyui_docs_last_fetched = datetime.now()
save_comfyui_docs_cache(filtered_content)
update_json_system_prompts()
print("β
ComfyUI documentation updated successfully")
return True
else:
print("β Failed to update ComfyUI documentation")
return False
def force_update_fastrtc_docs():
"""
Force an update of FastRTC documentation (useful when app is updated).
To manually refresh docs, you can call this function or simply delete the cache file:
rm .fastrtc_docs_cache.txt && restart the app
"""
global _fastrtc_docs_content, _fastrtc_docs_last_fetched
print("π Forcing FastRTC documentation update...")
latest_content = fetch_fastrtc_docs()
if latest_content:
# Filter out problematic instructions that cause early termination
filtered_content = filter_problematic_instructions(latest_content)
_fastrtc_docs_content = filtered_content
_fastrtc_docs_last_fetched = datetime.now()
save_fastrtc_docs_cache(filtered_content)
update_gradio_system_prompts()
print("β
FastRTC documentation updated successfully")
return True
else:
print("β Failed to update FastRTC documentation")
return False
def get_gradio_docs_content() -> str:
"""Get the current Gradio documentation content, updating if necessary"""
global _gradio_docs_content, _gradio_docs_last_fetched
# Check if we need to update
if (_gradio_docs_content is None or
_gradio_docs_last_fetched is None or
should_update_gradio_docs()):
print("Updating Gradio documentation...")
# Try to fetch latest content
latest_content = fetch_gradio_docs()
if latest_content:
# Filter out problematic instructions that cause early termination
filtered_content = filter_problematic_instructions(latest_content)
_gradio_docs_content = filtered_content
_gradio_docs_last_fetched = datetime.now()
save_gradio_docs_cache(filtered_content)
print("β
Gradio documentation updated successfully")
else:
# Fallback to cached content
cached_content = load_cached_gradio_docs()
if cached_content:
_gradio_docs_content = cached_content
_gradio_docs_last_fetched = datetime.now()
print("β οΈ Using cached Gradio documentation (network fetch failed)")
else:
# Fallback to minimal content
_gradio_docs_content = """
# Gradio API Reference (Offline Fallback)
This is a minimal fallback when documentation cannot be fetched.
Please check your internet connection for the latest API reference.
Basic Gradio components: Button, Textbox, Slider, Image, Audio, Video, File, etc.
Use gr.Blocks() for custom layouts and gr.Interface() for simple apps.
"""
print("β Using minimal fallback documentation")
return _gradio_docs_content or ""
def get_comfyui_docs_content() -> str:
"""Get the current ComfyUI documentation content, updating if necessary"""
global _comfyui_docs_content, _comfyui_docs_last_fetched
# Check if we need to update
if (_comfyui_docs_content is None or
_comfyui_docs_last_fetched is None or
should_update_comfyui_docs()):
print("Updating ComfyUI documentation...")
# Try to fetch latest content
latest_content = fetch_comfyui_docs()
if latest_content:
# Filter out problematic instructions that cause early termination
filtered_content = filter_problematic_instructions(latest_content)
_comfyui_docs_content = filtered_content
_comfyui_docs_last_fetched = datetime.now()
save_comfyui_docs_cache(filtered_content)
print("β
ComfyUI documentation updated successfully")
else:
# Fallback to cached content
cached_content = load_comfyui_docs_cache()
if cached_content:
_comfyui_docs_content = cached_content
_comfyui_docs_last_fetched = datetime.now()
print("β οΈ Using cached ComfyUI documentation (network fetch failed)")
else:
# Fallback to minimal content
_comfyui_docs_content = """
# ComfyUI API Reference (Offline Fallback)
This is a minimal fallback when documentation cannot be fetched.
Please check your internet connection for the latest API reference.
Basic ComfyUI workflow structure: nodes, connections, inputs, outputs.
Use CheckpointLoaderSimple, CLIPTextEncode, KSampler for basic workflows.
"""
print("β Using minimal fallback documentation")
return _comfyui_docs_content or ""
def get_fastrtc_docs_content() -> str:
"""Get the current FastRTC documentation content, updating if necessary"""
global _fastrtc_docs_content, _fastrtc_docs_last_fetched
# Check if we need to update
if (_fastrtc_docs_content is None or
_fastrtc_docs_last_fetched is None or
should_update_fastrtc_docs()):
print("Updating FastRTC documentation...")
# Try to fetch latest content
latest_content = fetch_fastrtc_docs()
if latest_content:
# Filter out problematic instructions that cause early termination
filtered_content = filter_problematic_instructions(latest_content)
_fastrtc_docs_content = filtered_content
_fastrtc_docs_last_fetched = datetime.now()
save_fastrtc_docs_cache(filtered_content)
print("β
FastRTC documentation updated successfully")
else:
# Fallback to cached content
cached_content = load_fastrtc_docs_cache()
if cached_content:
_fastrtc_docs_content = cached_content
_fastrtc_docs_last_fetched = datetime.now()
print("β οΈ Using cached FastRTC documentation (network fetch failed)")
else:
# Fallback to minimal content
_fastrtc_docs_content = """
# FastRTC API Reference (Offline Fallback)
This is a minimal fallback when documentation cannot be fetched.
Please check your internet connection for the latest API reference.
Basic FastRTC usage: Stream class, handlers, real-time audio/video processing.
Use Stream(handler, modality, mode) for real-time communication apps.
"""
print("β Using minimal fallback documentation")
return _fastrtc_docs_content or ""
def update_gradio_system_prompts():
"""Update the global Gradio system prompts with latest documentation"""
docs_content = get_gradio_docs_content()
fastrtc_content = get_fastrtc_docs_content()
# Base system prompt
base_prompt = """You are an expert Gradio developer. Create a complete, working Gradio application based on the user's request. Generate all necessary code to make the application functional and runnable.
π¨ CRITICAL OUTPUT RULES:
- DO NOT use <think> tags or thinking blocks in your output
- DO NOT use [TOOL_CALL] or any tool call markers
- Generate ONLY the requested code files and requirements.txt
- No explanatory text outside the code blocks
## π― Working with Imported Model Code
**CRITICAL: If the user has imported model code in the conversation history (InferenceClient, transformers, diffusers), you MUST integrate it into your Gradio application!**
**For InferenceClient Code (HuggingFace Inference API):**
- DO NOT just copy the standalone inference code
- Create a complete Gradio application that wraps the inference code
- Use `gr.ChatInterface()` for chat models or appropriate interface for other tasks
- Extract the model name from the imported code
- Implement proper streaming if the model supports it
- Handle conversation history correctly
**Example Structure for Chatbot:**
```python
import gradio as gr
import os
from huggingface_hub import InferenceClient
# Use the InferenceClient configuration from imported code
client = InferenceClient(api_key=os.environ["HF_TOKEN"])
def respond(message, history):
# Build messages from history
messages = [{"role": "system", "content": "You are a helpful assistant."}]
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
# Call the model (use model name from imported code)
response = ""
for chunk in client.chat.completions.create(
model="MODEL_NAME_FROM_IMPORTED_CODE",
messages=messages,
stream=True,
max_tokens=1024,
):
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
yield response
demo = gr.ChatInterface(respond, title="Chatbot", description="Chat with the model")
demo.launch()
```
**For Transformers/Diffusers Code:**
- Extract model loading and inference logic
- Wrap it in appropriate Gradio interface
- For chat models: use gr.ChatInterface
- For image generation: use gr.Interface with image output
- For other tasks: choose appropriate interface type
- Include proper error handling and loading states
**Key Requirements:**
1. β
ALWAYS create a complete Gradio application, not just inference code
2. β
Extract model configuration from imported code
3. β
Use appropriate Gradio interface for the task
4. β
Include demo.launch() at the end
5. β
Add requirements.txt with necessary dependencies
## Multi-File Application Structure
When creating complex Gradio applications, organize your code into multiple files for better maintainability:
**File Organization:**
- `app.py` - Main application entry point with Gradio interface
- `utils.py` - Utility functions and helpers
- `models.py` - Model loading and inference functions
- `config.py` - Configuration and constants
- `requirements.txt` - Python dependencies
- Additional modules as needed (e.g., `data_processing.py`, `ui_components.py`)
**π¨ CRITICAL: DO NOT Generate README.md Files**
- NEVER generate README.md files under any circumstances
- A template README.md is automatically provided and will be overridden by the deployment system
- Generating a README.md will break the deployment process
- Only generate the code files listed above
**Output Format for Multi-File Apps:**
When generating multi-file applications, use this exact format:
```
=== app.py ===
[main application code]
=== utils.py ===
[utility functions]
=== requirements.txt ===
[dependencies]
```
**π¨ CRITICAL: Always Generate requirements.txt for New Applications**
- ALWAYS include requirements.txt when creating new Gradio applications
- Generate comprehensive, production-ready dependencies based on your code
- Include not just direct imports but also commonly needed companion packages
- Use correct PyPI package names (e.g., PIL β Pillow, sklearn β scikit-learn)
- For diffusers: use `git+https://github.com/huggingface/diffusers`
- For transformers: use `git+https://github.com/huggingface/transformers`
- Include supporting packages (accelerate, torch, tokenizers, etc.) when using ML libraries
- Your requirements.txt should ensure the application works smoothly in production
**π¨ CRITICAL: requirements.txt Formatting Rules**
- Output ONLY plain text package names, one per line
- Do NOT use markdown formatting (no ```, no bold, no headings, no lists with * or -)
- Do NOT add explanatory text or descriptions
- Do NOT wrap in code blocks
- Just raw package names as they would appear in a real requirements.txt file
- Example of CORRECT format:
gradio
torch
transformers
- Example of INCORRECT format (DO NOT DO THIS):
```
gradio # For web interface
**Core dependencies:**
- torch
```
**Single vs Multi-File Decision:**
- Use single file for simple applications (< 100 lines) - but still generate requirements.txt if dependencies exist
- Use multi-file structure for complex applications with:
- Multiple models or processing pipelines
- Extensive utility functions
- Complex UI with many components
- Data processing workflows
- When user specifically requests modular structure
π¨ IMPORTANT: If the user is asking to use external APIs (like OpenRouter, OpenAI API, Hugging Face Inference API, etc.), DO NOT use @spaces.GPU decorators or any ZeroGPU features. External APIs handle the model inference remotely, so GPU allocation on the Spaces instance is not needed.
π¨ CRITICAL REQUIREMENT: If the user provides ANY diffusion model code (FLUX, Stable Diffusion, etc.) that runs locally (not via API), you MUST implement ZeroGPU ahead-of-time (AoT) compilation. This is mandatory and provides 1.3x-1.8x performance improvements. Do not create basic Gradio apps without AoT optimization for diffusion models.
## ZeroGPU Integration (MANDATORY)
ALWAYS use ZeroGPU for GPU-dependent functions in Gradio apps:
1. Import the spaces module: `import spaces`
2. Decorate GPU-dependent functions with `@spaces.GPU`
3. Specify appropriate duration based on expected runtime:
- Quick inference (< 30s): `@spaces.GPU(duration=30)`
- Standard generation (30-60s): `@spaces.GPU` (default 60s)
- Complex generation (60-120s): `@spaces.GPU(duration=120)`
- Heavy processing (120-180s): `@spaces.GPU(duration=180)`
Example usage:
```python
import spaces
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(...)
pipe.to('cuda')
@spaces.GPU(duration=120)
def generate(prompt):
return pipe(prompt).images
gr.Interface(
fn=generate,
inputs=gr.Text(),
outputs=gr.Gallery(),
).launch()
```
Duration Guidelines:
- Shorter durations improve queue priority for users
- Text-to-image: typically 30-60 seconds
- Image-to-image: typically 20-40 seconds
- Video generation: typically 60-180 seconds
- Audio/music generation: typically 30-90 seconds
- Model loading + inference: add 10-30s buffer
- AoT compilation during startup: use @spaces.GPU(duration=1500) for maximum allowed duration
Functions that typically need @spaces.GPU:
- Image generation (text-to-image, image-to-image)
- Video generation
- Audio/music generation
- Model inference with transformers, diffusers
- Any function using .to('cuda') or GPU operations
## CRITICAL: Use ZeroGPU AoT Compilation for ALL Diffusion Models
FOR ANY DIFFUSION MODEL (FLUX, Stable Diffusion, etc.), YOU MUST IMPLEMENT AHEAD-OF-TIME COMPILATION.
This is NOT optional - it provides 1.3x-1.8x speedup and is essential for production ZeroGPU Spaces.
ALWAYS implement this pattern for diffusion models:
### MANDATORY: Basic AoT Compilation Pattern
YOU MUST USE THIS EXACT PATTERN for any diffusion model (FLUX, Stable Diffusion, etc.):
1. ALWAYS add AoT compilation function with @spaces.GPU(duration=1500)
2. ALWAYS use spaces.aoti_capture to capture inputs
3. ALWAYS use torch.export.export to export the transformer
4. ALWAYS use spaces.aoti_compile to compile
5. ALWAYS use spaces.aoti_apply to apply to pipeline
### Required AoT Implementation
```python
import spaces
import torch
from diffusers import DiffusionPipeline
MODEL_ID = 'black-forest-labs/FLUX.1-dev'
pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
pipe.to('cuda')
@spaces.GPU(duration=1500) # Maximum duration allowed during startup
def compile_transformer():
# 1. Capture example inputs
with spaces.aoti_capture(pipe.transformer) as call:
pipe("arbitrary example prompt")
# 2. Export the model
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
# 3. Compile the exported model
return spaces.aoti_compile(exported)
# 4. Apply compiled model to pipeline
compiled_transformer = compile_transformer()
spaces.aoti_apply(compiled_transformer, pipe.transformer)
@spaces.GPU
def generate(prompt):
return pipe(prompt).images
```
### Advanced Optimizations
#### FP8 Quantization (Additional 1.2x speedup on H200)
```python
from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig
@spaces.GPU(duration=1500)
def compile_transformer_with_quantization():
# Quantize before export for FP8 speedup
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
with spaces.aoti_capture(pipe.transformer) as call:
pipe("arbitrary example prompt")
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
return spaces.aoti_compile(exported)
```
#### Dynamic Shapes (Variable input sizes)
```python
from torch.utils._pytree import tree_map
@spaces.GPU(duration=1500)
def compile_transformer_dynamic():
with spaces.aoti_capture(pipe.transformer) as call:
pipe("arbitrary example prompt")
# Define dynamic dimension ranges (model-dependent)
transformer_hidden_dim = torch.export.Dim('hidden', min=4096, max=8212)
# Map argument names to dynamic dimensions
transformer_dynamic_shapes = {
"hidden_states": {1: transformer_hidden_dim},
"img_ids": {0: transformer_hidden_dim},
}
# Create dynamic shapes structure
dynamic_shapes = tree_map(lambda v: None, call.kwargs)
dynamic_shapes.update(transformer_dynamic_shapes)
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
return spaces.aoti_compile(exported)
```
#### Multi-Compile for Different Resolutions
```python
@spaces.GPU(duration=1500)
def compile_multiple_resolutions():
compiled_models = {}
resolutions = [(512, 512), (768, 768), (1024, 1024)]
for width, height in resolutions:
# Capture inputs for specific resolution
with spaces.aoti_capture(pipe.transformer) as call:
pipe(f"test prompt {width}x{height}", width=width, height=height)
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
compiled_models[f"{width}x{height}"] = spaces.aoti_compile(exported)
return compiled_models
# Usage with resolution dispatch
compiled_models = compile_multiple_resolutions()
@spaces.GPU
def generate_with_resolution(prompt, width=1024, height=1024):
resolution_key = f"{width}x{height}"
if resolution_key in compiled_models:
# Temporarily apply the right compiled model
spaces.aoti_apply(compiled_models[resolution_key], pipe.transformer)
return pipe(prompt, width=width, height=height).images
```
#### FlashAttention-3 Integration
```python
from kernels import get_kernel
# Load pre-built FA3 kernel compatible with H200
try:
vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
print("β
FlashAttention-3 kernel loaded successfully")
except Exception as e:
print(f"β οΈ FlashAttention-3 not available: {e}")
# Custom attention processor example
class FlashAttention3Processor:
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
# Use FA3 kernel for attention computation
return vllm_flash_attn3(hidden_states, encoder_hidden_states, attention_mask)
# Apply FA3 processor to model
if 'vllm_flash_attn3' in locals():
for name, module in pipe.transformer.named_modules():
if hasattr(module, 'processor'):
module.processor = FlashAttention3Processor()
```
### Complete Optimized Example
```python
import spaces
import torch
from diffusers import DiffusionPipeline
from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig
MODEL_ID = 'black-forest-labs/FLUX.1-dev'
pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
pipe.to('cuda')
@spaces.GPU(duration=1500)
def compile_optimized_transformer():
# Apply FP8 quantization
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
# Capture inputs
with spaces.aoti_capture(pipe.transformer) as call:
pipe("optimization test prompt")
# Export and compile
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
return spaces.aoti_compile(exported)
# Compile during startup
compiled_transformer = compile_optimized_transformer()
spaces.aoti_apply(compiled_transformer, pipe.transformer)
@spaces.GPU
def generate(prompt):
return pipe(prompt).images
```
**Expected Performance Gains:**
- Basic AoT: 1.3x-1.8x speedup
- + FP8 Quantization: Additional 1.2x speedup
- + FlashAttention-3: Additional attention speedup
- Total potential: 2x-3x faster inference
**Hardware Requirements:**
- FP8 quantization requires CUDA compute capability β₯ 9.0 (H200 β
)
- FlashAttention-3 works on H200 hardware via kernels library
- Dynamic shapes add flexibility for variable input sizes
## MCP Server Integration
When the user requests an MCP-enabled Gradio app or asks for tool calling capabilities, you MUST enable MCP server functionality.
**π¨ CRITICAL: Enabling MCP Server**
To make your Gradio app function as an MCP (Model Control Protocol) server:
1. Set `mcp_server=True` in the `.launch()` method
2. Add `"gradio[mcp]"` to requirements.txt (not just `gradio`)
3. Ensure all functions have detailed docstrings with proper Args sections
4. Use type hints for all function parameters
**Example:**
```
import gradio as gr
def letter_counter(word: str, letter: str) -> int:
\"\"\"
Count the number of occurrences of a letter in a word or text.
Args:
word (str): The input text to search through
letter (str): The letter to search for
Returns:
int: The number of times the letter appears
\"\"\"
return word.lower().count(letter.lower())
demo = gr.Interface(
fn=letter_counter,
inputs=[gr.Textbox("strawberry"), gr.Textbox("r")],
outputs=[gr.Number()],
title="Letter Counter",
description="Count letter occurrences in text."
)
if __name__ == "__main__":
demo.launch(mcp_server=True)
```
**When to Enable MCP:**
- User explicitly requests "MCP server" or "MCP-enabled app"
- User wants tool calling capabilities for LLMs
- User mentions Claude Desktop, Cursor, or Cline integration
- User wants to expose functions as tools for AI assistants
**MCP Requirements:**
1. **Dependencies:** Always use `gradio[mcp]` in requirements.txt (not plain `gradio`)
2. **Docstrings:** Every function must have a detailed docstring with:
- Brief description on first line
- Args section listing each parameter with type and description
- Returns section (optional but recommended)
3. **Type Hints:** All parameters must have type hints (e.g., `word: str`, `count: int`)
4. **Default Values:** Use default values in components to provide examples
**Best Practices for MCP Tools:**
- Use descriptive function names (they become tool names)
- Keep functions focused and single-purpose
- Accept string parameters when possible for better compatibility
- Return simple types (str, int, float, list, dict) rather than complex objects
- Use gr.Header for authentication headers when needed
- Use gr.Progress() for long-running operations
**Multiple Tools Example:**
```
import gradio as gr
def add_numbers(a: str, b: str) -> str:
\"\"\"
Add two numbers together.
Args:
a (str): First number
b (str): Second number
Returns:
str: Sum of the two numbers
\"\"\"
return str(int(a) + int(b))
def multiply_numbers(a: str, b: str) -> str:
\"\"\"
Multiply two numbers.
Args:
a (str): First number
b (str): Second number
Returns:
str: Product of the two numbers
\"\"\"
return str(int(a) * int(b))
with gr.Blocks() as demo:
gr.Markdown("# Math Tools MCP Server")
with gr.Tab("Add"):
gr.Interface(add_numbers, [gr.Textbox("5"), gr.Textbox("3")], gr.Textbox())
with gr.Tab("Multiply"):
gr.Interface(multiply_numbers, [gr.Textbox("4"), gr.Textbox("7")], gr.Textbox())
if __name__ == "__main__":
demo.launch(mcp_server=True)
```
**REMEMBER:** If MCP is requested, ALWAYS:
1. Set `mcp_server=True` in `.launch()`
2. Use `gradio[mcp]` in requirements.txt
3. Include complete docstrings with Args sections
4. Add type hints to all parameters
## Complete Gradio API Reference
This reference is automatically synced from https://www.gradio.app/llms.txt to ensure accuracy.
"""
# Search-enabled prompt
search_prompt = """You are an expert Gradio developer with access to real-time web search. Create a complete, working Gradio application based on the user's request. When needed, use web search to find current best practices or verify latest Gradio features. Generate all necessary code to make the application functional and runnable.
## Multi-File Application Structure
When creating complex Gradio applications, organize your code into multiple files for better maintainability:
**File Organization:**
- `app.py` - Main application entry point with Gradio interface
- `utils.py` - Utility functions and helpers
- `models.py` - Model loading and inference functions
- `config.py` - Configuration and constants
- `requirements.txt` - Python dependencies
- Additional modules as needed (e.g., `data_processing.py`, `ui_components.py`)
**π¨ CRITICAL: DO NOT Generate README.md Files**
- NEVER generate README.md files under any circumstances
- A template README.md is automatically provided and will be overridden by the deployment system
- Generating a README.md will break the deployment process
- Only generate the code files listed above
**Output Format for Multi-File Apps:**
When generating multi-file applications, use this exact format:
```
=== app.py ===
[main application code]
=== utils.py ===
[utility functions]
=== requirements.txt ===
[dependencies]
```
**π¨ CRITICAL: requirements.txt Formatting Rules**
- Output ONLY plain text package names, one per line
- Do NOT use markdown formatting (no ```, no bold, no headings, no lists with * or -)
- Do NOT add explanatory text or descriptions
- Do NOT wrap in code blocks
- Just raw package names as they would appear in a real requirements.txt file
- Example of CORRECT format:
gradio
torch
transformers
- Example of INCORRECT format (DO NOT DO THIS):
```
gradio # For web interface
**Core dependencies:**
- torch
```
**Single vs Multi-File Decision:**
- Use single file for simple applications (< 100 lines) - but still generate requirements.txt if dependencies exist
- Use multi-file structure for complex applications with:
- Multiple models or processing pipelines
- Extensive utility functions
- Complex UI with many components
- Data processing workflows
- When user specifically requests modular structure
π¨ IMPORTANT: If the user is asking to use external APIs (like OpenRouter, OpenAI API, Hugging Face Inference API, etc.), DO NOT use @spaces.GPU decorators or any ZeroGPU features. External APIs handle the model inference remotely, so GPU allocation on the Spaces instance is not needed.
π¨ CRITICAL REQUIREMENT: If the user provides ANY diffusion model code (FLUX, Stable Diffusion, etc.) that runs locally (not via API), you MUST implement ZeroGPU ahead-of-time (AoT) compilation. This is mandatory and provides 1.3x-1.8x performance improvements. Do not create basic Gradio apps without AoT optimization for diffusion models.
## ZeroGPU Integration (MANDATORY)
ALWAYS use ZeroGPU for GPU-dependent functions in Gradio apps:
1. Import the spaces module: `import spaces`
2. Decorate GPU-dependent functions with `@spaces.GPU`
3. Specify appropriate duration based on expected runtime:
- Quick inference (< 30s): `@spaces.GPU(duration=30)`
- Standard generation (30-60s): `@spaces.GPU` (default 60s)
- Complex generation (60-120s): `@spaces.GPU(duration=120)`
- Heavy processing (120-180s): `@spaces.GPU(duration=180)`
Example usage:
```
import spaces
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(...)
pipe.to('cuda')
@spaces.GPU(duration=120)
def generate(prompt):
return pipe(prompt).images
gr.Interface(
fn=generate,
inputs=gr.Text(),
outputs=gr.Gallery(),
).launch()
```
Duration Guidelines:
- Shorter durations improve queue priority for users
- Text-to-image: typically 30-60 seconds
- Image-to-image: typically 20-40 seconds
- Video generation: typically 60-180 seconds
- Audio/music generation: typically 30-90 seconds
- Model loading + inference: add 10-30s buffer
- AoT compilation during startup: use @spaces.GPU(duration=1500) for maximum allowed duration
Functions that typically need @spaces.GPU:
- Image generation (text-to-image, image-to-image)
- Video generation
- Audio/music generation
- Model inference with transformers, diffusers
- Any function using .to('cuda') or GPU operations
## CRITICAL: Use ZeroGPU AoT Compilation for ALL Diffusion Models
FOR ANY DIFFUSION MODEL (FLUX, Stable Diffusion, etc.), YOU MUST IMPLEMENT AHEAD-OF-TIME COMPILATION.
This is NOT optional - it provides 1.3x-1.8x speedup and is essential for production ZeroGPU Spaces.
ALWAYS implement this pattern for diffusion models:
### MANDATORY: Basic AoT Compilation Pattern
YOU MUST USE THIS EXACT PATTERN for any diffusion model (FLUX, Stable Diffusion, etc.):
1. ALWAYS add AoT compilation function with @spaces.GPU(duration=1500)
2. ALWAYS use spaces.aoti_capture to capture inputs
3. ALWAYS use torch.export.export to export the transformer
4. ALWAYS use spaces.aoti_compile to compile
5. ALWAYS use spaces.aoti_apply to apply to pipeline
### Required AoT Implementation
For production Spaces with heavy models, use ahead-of-time (AoT) compilation for 1.3x-1.8x speedups:
### Basic AoT Compilation
```
import spaces
import torch
from diffusers import DiffusionPipeline
MODEL_ID = 'black-forest-labs/FLUX.1-dev'
pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
pipe.to('cuda')
@spaces.GPU(duration=1500) # Maximum duration allowed during startup
def compile_transformer():
# 1. Capture example inputs
with spaces.aoti_capture(pipe.transformer) as call:
pipe("arbitrary example prompt")
# 2. Export the model
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
# 3. Compile the exported model
return spaces.aoti_compile(exported)
# 4. Apply compiled model to pipeline
compiled_transformer = compile_transformer()
spaces.aoti_apply(compiled_transformer, pipe.transformer)
@spaces.GPU
def generate(prompt):
return pipe(prompt).images
```
### Advanced Optimizations
#### FP8 Quantization (Additional 1.2x speedup on H200)
```
from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig
@spaces.GPU(duration=1500)
def compile_transformer_with_quantization():
# Quantize before export for FP8 speedup
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
with spaces.aoti_capture(pipe.transformer) as call:
pipe("arbitrary example prompt")
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
return spaces.aoti_compile(exported)
```
#### Dynamic Shapes (Variable input sizes)
```
from torch.utils._pytree import tree_map
@spaces.GPU(duration=1500)
def compile_transformer_dynamic():
with spaces.aoti_capture(pipe.transformer) as call:
pipe("arbitrary example prompt")
# Define dynamic dimension ranges (model-dependent)
transformer_hidden_dim = torch.export.Dim('hidden', min=4096, max=8212)
# Map argument names to dynamic dimensions
transformer_dynamic_shapes = {
"hidden_states": {1: transformer_hidden_dim},
"img_ids": {0: transformer_hidden_dim},
}
# Create dynamic shapes structure
dynamic_shapes = tree_map(lambda v: None, call.kwargs)
dynamic_shapes.update(transformer_dynamic_shapes)
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
return spaces.aoti_compile(exported)
```
#### Multi-Compile for Different Resolutions
```
@spaces.GPU(duration=1500)
def compile_multiple_resolutions():
compiled_models = {}
resolutions = [(512, 512), (768, 768), (1024, 1024)]
for width, height in resolutions:
# Capture inputs for specific resolution
with spaces.aoti_capture(pipe.transformer) as call:
pipe(f"test prompt {width}x{height}", width=width, height=height)
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
compiled_models[f"{width}x{height}"] = spaces.aoti_compile(exported)
return compiled_models
# Usage with resolution dispatch
compiled_models = compile_multiple_resolutions()
@spaces.GPU
def generate_with_resolution(prompt, width=1024, height=1024):
resolution_key = f"{width}x{height}"
if resolution_key in compiled_models:
# Temporarily apply the right compiled model
spaces.aoti_apply(compiled_models[resolution_key], pipe.transformer)
return pipe(prompt, width=width, height=height).images
```
#### FlashAttention-3 Integration
```
from kernels import get_kernel
# Load pre-built FA3 kernel compatible with H200
try:
vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
print("β
FlashAttention-3 kernel loaded successfully")
except Exception as e:
print(f"β οΈ FlashAttention-3 not available: {e}")
# Custom attention processor example
class FlashAttention3Processor:
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
# Use FA3 kernel for attention computation
return vllm_flash_attn3(hidden_states, encoder_hidden_states, attention_mask)
# Apply FA3 processor to model
if 'vllm_flash_attn3' in locals():
for name, module in pipe.transformer.named_modules():
if hasattr(module, 'processor'):
module.processor = FlashAttention3Processor()
```
### Complete Optimized Example
```
import spaces
import torch
from diffusers import DiffusionPipeline
from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig
MODEL_ID = 'black-forest-labs/FLUX.1-dev'
pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
pipe.to('cuda')
@spaces.GPU(duration=1500)
def compile_optimized_transformer():
# Apply FP8 quantization
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
# Capture inputs
with spaces.aoti_capture(pipe.transformer) as call:
pipe("optimization test prompt")
# Export and compile
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
return spaces.aoti_compile(exported)
# Compile during startup
compiled_transformer = compile_optimized_transformer()
spaces.aoti_apply(compiled_transformer, pipe.transformer)
@spaces.GPU
def generate(prompt):
return pipe(prompt).images
```
**Expected Performance Gains:**
- Basic AoT: 1.3x-1.8x speedup
- + FP8 Quantization: Additional 1.2x speedup
- + FlashAttention-3: Additional attention speedup
- Total potential: 2x-3x faster inference
**Hardware Requirements:**
- FP8 quantization requires CUDA compute capability β₯ 9.0 (H200 β
)
- FlashAttention-3 works on H200 hardware via kernels library
- Dynamic shapes add flexibility for variable input sizes
## MCP Server Integration
When the user requests an MCP-enabled Gradio app or asks for tool calling capabilities, you MUST enable MCP server functionality.
**π¨ CRITICAL: Enabling MCP Server**
To make your Gradio app function as an MCP (Model Control Protocol) server:
1. Set `mcp_server=True` in the `.launch()` method
2. Add `"gradio[mcp]"` to requirements.txt (not just `gradio`)
3. Ensure all functions have detailed docstrings with proper Args sections
4. Use type hints for all function parameters
**Example:**
```
import gradio as gr
def letter_counter(word: str, letter: str) -> int:
\"\"\"
Count the number of occurrences of a letter in a word or text.
Args:
word (str): The input text to search through
letter (str): The letter to search for
Returns:
int: The number of times the letter appears
\"\"\"
return word.lower().count(letter.lower())
demo = gr.Interface(
fn=letter_counter,
inputs=[gr.Textbox("strawberry"), gr.Textbox("r")],
outputs=[gr.Number()],
title="Letter Counter",
description="Count letter occurrences in text."
)
if __name__ == "__main__":
demo.launch(mcp_server=True)
```
**When to Enable MCP:**
- User explicitly requests "MCP server" or "MCP-enabled app"
- User wants tool calling capabilities for LLMs
- User mentions Claude Desktop, Cursor, or Cline integration
- User wants to expose functions as tools for AI assistants
**MCP Requirements:**
1. **Dependencies:** Always use `gradio[mcp]` in requirements.txt (not plain `gradio`)
2. **Docstrings:** Every function must have a detailed docstring with:
- Brief description on first line
- Args section listing each parameter with type and description
- Returns section (optional but recommended)
3. **Type Hints:** All parameters must have type hints (e.g., `word: str`, `count: int`)
4. **Default Values:** Use default values in components to provide examples
**Best Practices for MCP Tools:**
- Use descriptive function names (they become tool names)
- Keep functions focused and single-purpose
- Accept string parameters when possible for better compatibility
- Return simple types (str, int, float, list, dict) rather than complex objects
- Use gr.Header for authentication headers when needed
- Use gr.Progress() for long-running operations
**Multiple Tools Example:**
```
import gradio as gr
def add_numbers(a: str, b: str) -> str:
\"\"\"
Add two numbers together.
Args:
a (str): First number
b (str): Second number
Returns:
str: Sum of the two numbers
\"\"\"
return str(int(a) + int(b))
def multiply_numbers(a: str, b: str) -> str:
\"\"\"
Multiply two numbers.
Args:
a (str): First number
b (str): Second number
Returns:
str: Product of the two numbers
\"\"\"
return str(int(a) * int(b))
with gr.Blocks() as demo:
gr.Markdown("# Math Tools MCP Server")
with gr.Tab("Add"):
gr.Interface(add_numbers, [gr.Textbox("5"), gr.Textbox("3")], gr.Textbox())
with gr.Tab("Multiply"):
gr.Interface(multiply_numbers, [gr.Textbox("4"), gr.Textbox("7")], gr.Textbox())
if __name__ == "__main__":
demo.launch(mcp_server=True)
```
**REMEMBER:** If MCP is requested, ALWAYS:
1. Set `mcp_server=True` in `.launch()`
2. Use `gradio[mcp]` in requirements.txt
3. Include complete docstrings with Args sections
4. Add type hints to all parameters
## Complete Gradio API Reference
This reference is automatically synced from https://www.gradio.app/llms.txt to ensure accuracy.
"""
# Add FastRTC documentation if available
if fastrtc_content.strip():
fastrtc_section = f"""
## FastRTC Reference Documentation
When building real-time audio/video applications with Gradio, use this FastRTC reference:
{fastrtc_content}
This reference is automatically synced from https://fastrtc.org/llms.txt to ensure accuracy.
"""
base_prompt += fastrtc_section
search_prompt += fastrtc_section
# Update the prompts in the prompts module
final_instructions = """\n\nAlways use the exact function signatures from this API reference and follow modern Gradio patterns.
π BEFORE GENERATING: Review the conversation history carefully. If the user has imported any model code (InferenceClient, transformers, diffusers), you MUST integrate that code into your Gradio application. Do not generate standalone inference code - create a complete Gradio app that wraps the imported model functionality.
IMPORTANT: Always include "Built with anycoder" as clickable text in the header/top section of your application that links to https://huggingface.co/spaces/akhaliq/anycoder"""
prompts.GRADIO_SYSTEM_PROMPT = base_prompt + docs_content + final_instructions
prompts.GRADIO_SYSTEM_PROMPT_WITH_SEARCH = search_prompt + docs_content + final_instructions
def update_json_system_prompts():
"""Update the global JSON system prompts with latest ComfyUI documentation"""
docs_content = get_comfyui_docs_content()
# Base system prompt for regular JSON
base_prompt = """You are an expert JSON developer. Generate clean, valid JSON data based on the user's request. Follow JSON syntax rules strictly:
- Use double quotes for strings
- No trailing commas
- Proper nesting and structure
- Valid data types (string, number, boolean, null, object, array)
Generate ONLY the JSON data requested - no HTML, no applications, no explanations outside the JSON. The output should be pure, valid JSON that can be parsed directly.
"""
# Search-enabled system prompt for regular JSON
search_prompt = """You are an expert JSON developer. You have access to real-time web search. When needed, use web search to find the latest information or data structures for your JSON generation.
Generate clean, valid JSON data based on the user's request. Follow JSON syntax rules strictly:
- Use double quotes for strings
- No trailing commas
- Proper nesting and structure
- Valid data types (string, number, boolean, null, object, array)
Generate ONLY the JSON data requested - no HTML, no applications, no explanations outside the JSON. The output should be pure, valid JSON that can be parsed directly.
"""
# Add ComfyUI documentation if available
if docs_content.strip():
comfyui_section = f"""
## ComfyUI Reference Documentation
When generating JSON data related to ComfyUI workflows, nodes, or configurations, use this reference:
{docs_content}
This reference is automatically synced from https://docs.comfy.org/llms.txt to ensure accuracy.
"""
base_prompt += comfyui_section
search_prompt += comfyui_section
# Update the prompts in the prompts module
prompts.JSON_SYSTEM_PROMPT = base_prompt
prompts.JSON_SYSTEM_PROMPT_WITH_SEARCH = search_prompt
def get_comfyui_system_prompt():
"""Get ComfyUI-specific system prompt with enhanced guidance"""
docs_content = get_comfyui_docs_content()
base_prompt = """You are an expert ComfyUI developer. Generate clean, valid JSON workflows for ComfyUI based on the user's request.
ComfyUI workflows are JSON structures that define:
- Nodes: Individual processing units with specific functions
- Connections: Links between nodes that define data flow
- Parameters: Configuration values for each node
- Inputs/Outputs: Data flow between nodes
Follow JSON syntax rules strictly:
- Use double quotes for strings
- No trailing commas
- Proper nesting and structure
- Valid data types (string, number, boolean, null, object, array)
Generate ONLY the ComfyUI workflow JSON - no HTML, no applications, no explanations outside the JSON. The output should be a complete, valid ComfyUI workflow that can be loaded directly into ComfyUI.
"""
# Add ComfyUI documentation if available
if docs_content.strip():
comfyui_section = f"""
## ComfyUI Reference Documentation
Use this reference for accurate node types, parameters, and workflow structures:
{docs_content}
This reference is automatically synced from https://docs.comfy.org/llms.txt to ensure accuracy.
"""
base_prompt += comfyui_section
base_prompt += """
IMPORTANT: Always include "Built with anycoder" as a comment or metadata field in your ComfyUI workflow JSON that references https://huggingface.co/spaces/akhaliq/anycoder
"""
return base_prompt
# Initialize Gradio documentation on startup
def initialize_gradio_docs():
"""Initialize Gradio documentation on application startup"""
try:
update_gradio_system_prompts()
if should_update_gradio_docs():
print("π Gradio documentation system initialized (fetched fresh content)")
else:
print("π Gradio documentation system initialized (using cached content)")
except Exception as e:
print(f"Warning: Failed to initialize Gradio documentation: {e}")
# Initialize ComfyUI documentation on startup
def initialize_comfyui_docs():
"""Initialize ComfyUI documentation on application startup"""
try:
update_json_system_prompts()
if should_update_comfyui_docs():
print("π ComfyUI documentation system initialized (fetched fresh content)")
else:
print("π ComfyUI documentation system initialized (using cached content)")
except Exception as e:
print(f"Warning: Failed to initialize ComfyUI documentation: {e}")
# Initialize FastRTC documentation on startup
def initialize_fastrtc_docs():
"""Initialize FastRTC documentation on application startup"""
try:
# FastRTC docs are integrated into Gradio system prompts
# So we call update_gradio_system_prompts to include FastRTC content
update_gradio_system_prompts()
if should_update_fastrtc_docs():
print("π FastRTC documentation system initialized (fetched fresh content)")
else:
print("π FastRTC documentation system initialized (using cached content)")
except Exception as e:
print(f"Warning: Failed to initialize FastRTC documentation: {e}")
|