anycoder / backend_api.py
akhaliq's picture
akhaliq HF Staff
add import feature
3eb00a5
raw
history blame
30.3 kB
"""
FastAPI backend for AnyCoder - provides REST API endpoints
"""
from fastapi import FastAPI, HTTPException, Header, WebSocket, WebSocketDisconnect, Request, Response
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, RedirectResponse, JSONResponse
from pydantic import BaseModel
from typing import Optional, List, Dict, AsyncGenerator
import json
import asyncio
from datetime import datetime
import secrets
import base64
import urllib.parse
# Import only what we need, avoiding Gradio UI imports
import sys
import os
from huggingface_hub import InferenceClient
import httpx
# Import model handling from backend_models
from backend_models import (
get_inference_client,
get_real_model_id,
create_gemini3_messages,
is_native_sdk_model,
is_mistral_model
)
# Import project importer for importing from HF/GitHub
from project_importer import ProjectImporter
# Import system prompts from standalone backend_prompts.py
# No dependencies on Gradio or heavy libraries
print("[Startup] Loading system prompts from backend_prompts...")
try:
from backend_prompts import (
HTML_SYSTEM_PROMPT,
TRANSFORMERS_JS_SYSTEM_PROMPT,
STREAMLIT_SYSTEM_PROMPT,
REACT_SYSTEM_PROMPT,
GRADIO_SYSTEM_PROMPT,
JSON_SYSTEM_PROMPT,
GENERIC_SYSTEM_PROMPT
)
print("[Startup] ✅ All system prompts loaded successfully from backend_prompts.py")
except Exception as e:
import traceback
print(f"[Startup] ❌ ERROR: Could not import from backend_prompts: {e}")
print(f"[Startup] Traceback: {traceback.format_exc()}")
print("[Startup] Using minimal fallback prompts")
# Define minimal fallback prompts
HTML_SYSTEM_PROMPT = "You are an expert web developer. Create complete HTML applications with CSS and JavaScript."
TRANSFORMERS_JS_SYSTEM_PROMPT = "You are an expert at creating transformers.js applications. Generate complete working code."
STREAMLIT_SYSTEM_PROMPT = "You are an expert Streamlit developer. Create complete Streamlit applications."
REACT_SYSTEM_PROMPT = "You are an expert React developer. Create complete React applications with Next.js."
GRADIO_SYSTEM_PROMPT = "You are an expert Gradio developer. Create complete, working Gradio applications."
JSON_SYSTEM_PROMPT = "You are an expert at generating JSON configurations. Create valid, well-structured JSON."
GENERIC_SYSTEM_PROMPT = "You are an expert {language} developer. Create complete, working {language} applications."
print("[Startup] System prompts initialization complete")
# Define models and languages here to avoid importing Gradio UI
AVAILABLE_MODELS = [
{"name": "Gemini 3.0 Pro", "id": "gemini-3.0-pro", "description": "Google Gemini 3.0 Pro via Poe with advanced reasoning"},
{"name": "Sherlock Dash Alpha", "id": "openrouter/sherlock-dash-alpha", "description": "Sherlock Dash Alpha model via OpenRouter"},
{"name": "MiniMax M2", "id": "MiniMaxAI/MiniMax-M2", "description": "MiniMax M2 model via HuggingFace InferenceClient with Novita provider"},
{"name": "DeepSeek V3.2-Exp", "id": "deepseek-ai/DeepSeek-V3.2-Exp", "description": "DeepSeek V3.2 Experimental via HuggingFace"},
{"name": "DeepSeek R1", "id": "deepseek-ai/DeepSeek-R1-0528", "description": "DeepSeek R1 model for code generation"},
{"name": "GPT-5", "id": "gpt-5", "description": "OpenAI GPT-5 via OpenRouter"},
{"name": "Gemini Flash Latest", "id": "gemini-flash-latest", "description": "Google Gemini Flash via OpenRouter"},
{"name": "Qwen3 Max Preview", "id": "qwen3-max-preview", "description": "Qwen3 Max Preview via DashScope API"},
]
LANGUAGE_CHOICES = ["html", "gradio", "transformers.js", "streamlit", "comfyui", "react"]
app = FastAPI(title="AnyCoder API", version="1.0.0")
# OAuth and environment configuration (must be before CORS)
OAUTH_CLIENT_ID = os.getenv("OAUTH_CLIENT_ID", "")
OAUTH_CLIENT_SECRET = os.getenv("OAUTH_CLIENT_SECRET", "")
OAUTH_SCOPES = os.getenv("OAUTH_SCOPES", "openid profile manage-repos")
OPENID_PROVIDER_URL = os.getenv("OPENID_PROVIDER_URL", "https://huggingface.co")
SPACE_HOST = os.getenv("SPACE_HOST", "localhost:7860")
# Configure CORS - allow all origins in production, specific in dev
# In Docker Space, requests come from the same domain via Next.js proxy
ALLOWED_ORIGINS = os.getenv("ALLOWED_ORIGINS", "*").split(",") if os.getenv("ALLOWED_ORIGINS") else [
"http://localhost:3000",
"http://localhost:3001",
"http://localhost:7860",
f"https://{SPACE_HOST}" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else "http://localhost:7860"
]
app.add_middleware(
CORSMiddleware,
allow_origins=ALLOWED_ORIGINS if ALLOWED_ORIGINS != ["*"] else ["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
allow_origin_regex=r"https://.*\.hf\.space" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else None,
)
# In-memory store for OAuth states (in production, use Redis or similar)
oauth_states = {}
# In-memory store for user sessions
user_sessions = {}
# Pydantic models for request/response
class CodeGenerationRequest(BaseModel):
query: str
language: str = "html"
model_id: str = "gemini-3.0-pro"
provider: str = "auto"
history: List[List[str]] = []
agent_mode: bool = False
class DeploymentRequest(BaseModel):
code: str
space_name: Optional[str] = None
language: str
requirements: Optional[str] = None
existing_repo_id: Optional[str] = None # For updating existing spaces
commit_message: Optional[str] = None
class AuthStatus(BaseModel):
authenticated: bool
username: Optional[str] = None
message: str
class ModelInfo(BaseModel):
name: str
id: str
description: str
class CodeGenerationResponse(BaseModel):
code: str
history: List[List[str]]
status: str
class ImportRequest(BaseModel):
url: str
prefer_local: bool = False
class ImportResponse(BaseModel):
status: str
message: str
code: str
language: str
url: str
metadata: Dict
# Mock authentication for development
# In production, integrate with HuggingFace OAuth
class MockAuth:
def __init__(self, token: Optional[str] = None, username: Optional[str] = None):
self.token = token
self.username = username
def is_authenticated(self):
return bool(self.token)
def get_auth_from_header(authorization: Optional[str] = None):
"""Extract authentication from header or session token"""
if not authorization:
return MockAuth(None, None)
# Handle "Bearer " prefix
if authorization.startswith("Bearer "):
token = authorization.replace("Bearer ", "")
else:
token = authorization
# Check if this is a session token (UUID format)
if token and "-" in token and len(token) > 20:
# Look up the session to get user info
if token in user_sessions:
session = user_sessions[token]
return MockAuth(session["access_token"], session["username"])
# Dev token format: dev_token_<username>_<timestamp>
if token and token.startswith("dev_token_"):
parts = token.split("_")
username = parts[2] if len(parts) > 2 else "user"
return MockAuth(token, username)
# Regular token (OAuth access token passed directly)
return MockAuth(token, None)
@app.get("/")
async def root():
"""Health check endpoint"""
return {"status": "ok", "message": "AnyCoder API is running"}
@app.get("/api/models", response_model=List[ModelInfo])
async def get_models():
"""Get available AI models"""
return [
ModelInfo(
name=model["name"],
id=model["id"],
description=model["description"]
)
for model in AVAILABLE_MODELS
]
@app.get("/api/languages")
async def get_languages():
"""Get available programming languages/frameworks"""
return {"languages": LANGUAGE_CHOICES}
@app.get("/api/auth/login")
async def oauth_login(request: Request):
"""Initiate OAuth login flow"""
# Generate a random state to prevent CSRF
state = secrets.token_urlsafe(32)
oauth_states[state] = {"timestamp": datetime.now()}
# Build redirect URI
protocol = "https" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else "http"
redirect_uri = f"{protocol}://{SPACE_HOST}/api/auth/callback"
# Build authorization URL
auth_url = (
f"{OPENID_PROVIDER_URL}/oauth/authorize"
f"?client_id={OAUTH_CLIENT_ID}"
f"&redirect_uri={urllib.parse.quote(redirect_uri)}"
f"&scope={urllib.parse.quote(OAUTH_SCOPES)}"
f"&state={state}"
f"&response_type=code"
)
return JSONResponse({"login_url": auth_url, "state": state})
@app.get("/api/auth/callback")
async def oauth_callback(code: str, state: str, request: Request):
"""Handle OAuth callback"""
# Verify state to prevent CSRF
if state not in oauth_states:
raise HTTPException(status_code=400, detail="Invalid state parameter")
# Clean up old states
oauth_states.pop(state, None)
# Exchange code for tokens
protocol = "https" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else "http"
redirect_uri = f"{protocol}://{SPACE_HOST}/api/auth/callback"
# Prepare authorization header
auth_string = f"{OAUTH_CLIENT_ID}:{OAUTH_CLIENT_SECRET}"
auth_bytes = auth_string.encode('utf-8')
auth_b64 = base64.b64encode(auth_bytes).decode('utf-8')
async with httpx.AsyncClient() as client:
try:
token_response = await client.post(
f"{OPENID_PROVIDER_URL}/oauth/token",
data={
"client_id": OAUTH_CLIENT_ID,
"code": code,
"grant_type": "authorization_code",
"redirect_uri": redirect_uri,
},
headers={
"Authorization": f"Basic {auth_b64}",
"Content-Type": "application/x-www-form-urlencoded",
},
)
token_response.raise_for_status()
token_data = token_response.json()
# Get user info
access_token = token_data.get("access_token")
userinfo_response = await client.get(
f"{OPENID_PROVIDER_URL}/oauth/userinfo",
headers={"Authorization": f"Bearer {access_token}"},
)
userinfo_response.raise_for_status()
user_info = userinfo_response.json()
# Create session
session_token = secrets.token_urlsafe(32)
user_sessions[session_token] = {
"access_token": access_token,
"user_info": user_info,
"timestamp": datetime.now(),
"username": user_info.get("name") or user_info.get("preferred_username") or "user",
"deployed_spaces": [] # Track deployed spaces for follow-up updates
}
# Redirect to frontend with session token
frontend_url = f"{protocol}://{SPACE_HOST}/?session={session_token}"
return RedirectResponse(url=frontend_url)
except httpx.HTTPError as e:
print(f"OAuth error: {e}")
raise HTTPException(status_code=500, detail=f"OAuth failed: {str(e)}")
@app.get("/api/auth/session")
async def get_session(session: str):
"""Get user info from session token"""
if session not in user_sessions:
raise HTTPException(status_code=401, detail="Invalid session")
session_data = user_sessions[session]
return {
"access_token": session_data["access_token"],
"user_info": session_data["user_info"],
}
@app.get("/api/auth/status")
async def auth_status(authorization: Optional[str] = Header(None)):
"""Check authentication status"""
auth = get_auth_from_header(authorization)
if auth.is_authenticated():
return AuthStatus(
authenticated=True,
username=auth.username,
message=f"Authenticated as {auth.username}"
)
return AuthStatus(
authenticated=False,
username=None,
message="Not authenticated"
)
@app.get("/api/generate")
async def generate_code(
query: str,
language: str = "html",
model_id: str = "openrouter/sherlock-dash-alpha",
provider: str = "auto",
authorization: Optional[str] = Header(None)
):
"""Generate code based on user query - returns streaming response"""
# Dev mode: No authentication required - just use server's HF_TOKEN
# In production, you would check real OAuth tokens here
async def event_stream() -> AsyncGenerator[str, None]:
"""Stream generated code chunks"""
# Use the model_id from outer scope
selected_model_id = model_id
try:
# Find the selected model
selected_model = None
for model in AVAILABLE_MODELS:
if model["id"] == selected_model_id:
selected_model = model
break
if not selected_model:
selected_model = AVAILABLE_MODELS[0]
selected_model_id = selected_model["id"]
# Track generated code
generated_code = ""
# Select appropriate system prompt based on language
prompt_map = {
"html": HTML_SYSTEM_PROMPT,
"gradio": GRADIO_SYSTEM_PROMPT,
"streamlit": STREAMLIT_SYSTEM_PROMPT,
"transformers.js": TRANSFORMERS_JS_SYSTEM_PROMPT,
"react": REACT_SYSTEM_PROMPT,
"comfyui": JSON_SYSTEM_PROMPT,
}
system_prompt = prompt_map.get(language, GENERIC_SYSTEM_PROMPT.format(language=language))
print(f"[Generate] Using {language} prompt for query: {query[:100]}...")
# Get the client using backend_models
print(f"[Generate] Getting client for model: {selected_model_id}")
client = get_inference_client(selected_model_id, provider)
# Get the real model ID with provider suffixes
actual_model_id = get_real_model_id(selected_model_id)
print(f"[Generate] Using model ID: {actual_model_id}")
# Prepare messages
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Generate a {language} application: {query}"}
]
# Stream the response
try:
# Handle Mistral models with different API
if is_mistral_model(selected_model_id):
print("[Generate] Using Mistral SDK")
stream = client.chat.stream(
model=actual_model_id,
messages=messages,
max_tokens=10000
)
# All other models use OpenAI-compatible API
else:
stream = client.chat.completions.create(
model=actual_model_id,
messages=messages,
temperature=0.7,
max_tokens=10000,
stream=True
)
chunk_count = 0
print(f"[Generate] Starting to stream from {actual_model_id}...")
for chunk in stream:
# Handle different response formats
chunk_content = None
if is_mistral_model(selected_model_id):
# Mistral format: chunk.data.choices[0].delta.content
if (hasattr(chunk, "data") and chunk.data and
hasattr(chunk.data, "choices") and chunk.data.choices and
hasattr(chunk.data.choices[0], "delta") and
hasattr(chunk.data.choices[0].delta, "content") and
chunk.data.choices[0].delta.content is not None):
chunk_content = chunk.data.choices[0].delta.content
else:
# OpenAI format: chunk.choices[0].delta.content
if (hasattr(chunk, 'choices') and
chunk.choices and
len(chunk.choices) > 0 and
hasattr(chunk.choices[0], 'delta') and
hasattr(chunk.choices[0].delta, 'content') and
chunk.choices[0].delta.content):
chunk_content = chunk.choices[0].delta.content
if chunk_content:
content = chunk_content
generated_code += content
chunk_count += 1
# Log every 10th chunk to avoid spam
if chunk_count % 10 == 0:
print(f"[Generate] Streamed {chunk_count} chunks, {len(generated_code)} chars total")
# Send chunk as Server-Sent Event - yield immediately for instant streaming
event_data = json.dumps({
"type": "chunk",
"content": content,
"timestamp": datetime.now().isoformat()
})
yield f"data: {event_data}\n\n"
# Yield control to allow async processing - no artificial delay
await asyncio.sleep(0)
print(f"[Generate] Completed with {chunk_count} chunks, total length: {len(generated_code)}")
# Send completion event
completion_data = json.dumps({
"type": "complete",
"code": generated_code,
"timestamp": datetime.now().isoformat()
})
yield f"data: {completion_data}\n\n"
except Exception as e:
error_data = json.dumps({
"type": "error",
"message": str(e),
"timestamp": datetime.now().isoformat()
})
yield f"data: {error_data}\n\n"
except Exception as e:
error_data = json.dumps({
"type": "error",
"message": f"Generation error: {str(e)}",
"timestamp": datetime.now().isoformat()
})
yield f"data: {error_data}\n\n"
return StreamingResponse(
event_stream(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache, no-transform",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"Content-Encoding": "none",
"Transfer-Encoding": "chunked"
}
)
@app.post("/api/deploy")
async def deploy(
request: DeploymentRequest,
authorization: Optional[str] = Header(None)
):
"""Deploy generated code to HuggingFace Spaces"""
auth = get_auth_from_header(authorization)
if not auth.is_authenticated():
raise HTTPException(status_code=401, detail="Authentication required")
# Check if this is dev mode (no real token)
if auth.token and auth.token.startswith("dev_token_"):
# In dev mode, open HF Spaces creation page
from backend_deploy import detect_sdk_from_code
base_url = "https://huggingface.co/new-space"
sdk = detect_sdk_from_code(request.code, request.language)
params = urllib.parse.urlencode({
"name": request.space_name or "my-anycoder-app",
"sdk": sdk
})
# Prepare file content based on language
if request.language in ["html", "transformers.js", "comfyui"]:
file_path = "index.html"
else:
file_path = "app.py"
files_params = urllib.parse.urlencode({
"files[0][path]": file_path,
"files[0][content]": request.code
})
space_url = f"{base_url}?{params}&{files_params}"
return {
"success": True,
"space_url": space_url,
"message": "Dev mode: Please create the space manually",
"dev_mode": True
}
# Production mode with real OAuth token
try:
from backend_deploy import deploy_to_huggingface_space
# Get user token - should be the access_token from OAuth session
user_token = auth.token if auth.token else os.getenv("HF_TOKEN")
if not user_token:
raise HTTPException(status_code=401, detail="No HuggingFace token available. Please sign in first.")
print(f"[Deploy] Attempting deployment with token (first 10 chars): {user_token[:10]}...")
# Check for existing deployed space in this session
existing_repo_id = request.existing_repo_id
session_token = authorization.replace("Bearer ", "") if authorization else None
# If no existing_repo_id provided, check session for previously deployed spaces
if not existing_repo_id and session_token and session_token in user_sessions:
session = user_sessions[session_token]
deployed_spaces = session.get("deployed_spaces", [])
# Find the most recent space for this language
for space in reversed(deployed_spaces):
if space.get("language") == request.language:
existing_repo_id = space.get("repo_id")
print(f"[Deploy] Found existing space for {request.language}: {existing_repo_id}")
break
# Use the standalone deployment function
success, message, space_url = deploy_to_huggingface_space(
code=request.code,
language=request.language,
space_name=request.space_name,
token=user_token,
username=auth.username,
description=request.description if hasattr(request, 'description') else None,
private=False,
existing_repo_id=existing_repo_id,
commit_message=request.commit_message
)
if success:
# Track deployed space in session for follow-up updates
if session_token and session_token in user_sessions:
repo_id = space_url.split("/spaces/")[-1] if space_url else None
if repo_id:
session = user_sessions[session_token]
deployed_spaces = session.get("deployed_spaces", [])
# Update or add the space
space_entry = {
"repo_id": repo_id,
"language": request.language,
"timestamp": datetime.now()
}
# Remove old entry for same repo_id if exists
deployed_spaces = [s for s in deployed_spaces if s.get("repo_id") != repo_id]
deployed_spaces.append(space_entry)
session["deployed_spaces"] = deployed_spaces
print(f"[Deploy] Tracked space in session: {repo_id}")
return {
"success": True,
"space_url": space_url,
"message": message,
"repo_id": repo_id if 'repo_id' in locals() else None
}
else:
# Provide user-friendly error message based on the error
if "401" in message or "Unauthorized" in message:
raise HTTPException(
status_code=401,
detail="Authentication failed. Please sign in again with HuggingFace."
)
elif "403" in message or "Forbidden" in message or "Permission" in message:
raise HTTPException(
status_code=403,
detail="Permission denied. Your HuggingFace token may not have the required permissions (manage-repos scope)."
)
else:
raise HTTPException(
status_code=500,
detail=message
)
except HTTPException:
# Re-raise HTTP exceptions as-is
raise
except Exception as e:
# Log the full error for debugging
import traceback
error_details = traceback.format_exc()
print(f"[Deploy] Deployment error: {error_details}")
raise HTTPException(
status_code=500,
detail=f"Deployment failed: {str(e)}"
)
@app.post("/api/import", response_model=ImportResponse)
async def import_project(request: ImportRequest):
"""
Import a project from HuggingFace Space, HuggingFace Model, or GitHub repo
Supports URLs like:
- https://huggingface.co/spaces/username/space-name
- https://huggingface.co/username/model-name
- https://github.com/username/repo-name
"""
try:
importer = ProjectImporter()
result = importer.import_from_url(request.url)
# Handle model-specific prefer_local flag
if request.prefer_local and result.get('metadata', {}).get('has_alternatives'):
# Switch to local code if available
local_code = result['metadata'].get('local_code')
if local_code:
result['code'] = local_code
result['metadata']['code_type'] = 'local'
result['message'] = result['message'].replace('inference', 'local')
return ImportResponse(**result)
except Exception as e:
return ImportResponse(
status="error",
message=f"Import failed: {str(e)}",
code="",
language="unknown",
url=request.url,
metadata={}
)
@app.get("/api/import/space/{username}/{space_name}")
async def import_space(username: str, space_name: str):
"""Import a specific HuggingFace Space by username and space name"""
try:
importer = ProjectImporter()
result = importer.import_space(username, space_name)
return result
except Exception as e:
return {
"status": "error",
"message": f"Failed to import space: {str(e)}",
"code": "",
"language": "unknown",
"url": f"https://huggingface.co/spaces/{username}/{space_name}",
"metadata": {}
}
@app.get("/api/import/model/{path:path}")
async def import_model(path: str, prefer_local: bool = False):
"""
Import a specific HuggingFace Model by model ID
Example: /api/import/model/meta-llama/Llama-3.2-1B-Instruct
"""
try:
importer = ProjectImporter()
result = importer.import_model(path, prefer_local=prefer_local)
return result
except Exception as e:
return {
"status": "error",
"message": f"Failed to import model: {str(e)}",
"code": "",
"language": "python",
"url": f"https://huggingface.co/{path}",
"metadata": {}
}
@app.get("/api/import/github/{owner}/{repo}")
async def import_github(owner: str, repo: str):
"""Import a GitHub repository by owner and repo name"""
try:
importer = ProjectImporter()
result = importer.import_github_repo(owner, repo)
return result
except Exception as e:
return {
"status": "error",
"message": f"Failed to import repository: {str(e)}",
"code": "",
"language": "python",
"url": f"https://github.com/{owner}/{repo}",
"metadata": {}
}
@app.websocket("/ws/generate")
async def websocket_generate(websocket: WebSocket):
"""WebSocket endpoint for real-time code generation"""
await websocket.accept()
try:
while True:
# Receive message from client
data = await websocket.receive_json()
query = data.get("query")
language = data.get("language", "html")
model_id = data.get("model_id", "openrouter/sherlock-dash-alpha")
# Send acknowledgment
await websocket.send_json({
"type": "status",
"message": "Generating code..."
})
# Mock code generation for now
await asyncio.sleep(0.5)
# Send generated code in chunks
sample_code = f"<!-- Generated {language} code -->\n<h1>Hello from AnyCoder!</h1>"
for i, char in enumerate(sample_code):
await websocket.send_json({
"type": "chunk",
"content": char,
"progress": (i + 1) / len(sample_code) * 100
})
await asyncio.sleep(0.01)
# Send completion
await websocket.send_json({
"type": "complete",
"code": sample_code
})
except WebSocketDisconnect:
print("Client disconnected")
except Exception as e:
await websocket.send_json({
"type": "error",
"message": str(e)
})
await websocket.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run("backend_api:app", host="0.0.0.0", port=8000, reload=True)