Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import requests | |
| import os | |
| import spaces | |
| API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct" | |
| api_token = os.environ.get("TOKEN") | |
| headers = {"Authorization": f"Bearer {api_token}"} | |
| def query(payload): | |
| response = requests.post(API_URL, headers=headers, json=payload) | |
| return response.json() | |
| def generate_response(prompt): | |
| payload = { | |
| "inputs": prompt, | |
| "parameters": { | |
| "max_new_tokens": 1000, | |
| "temperature": 0.7, | |
| "top_p": 0.95, | |
| "do_sample": True | |
| } | |
| } | |
| response = query(payload) | |
| if isinstance(response, list) and len(response) > 0: | |
| return response[0].get('generated_text', '') | |
| elif isinstance(response, dict) and 'generated_text' in response: | |
| return response['generated_text'] | |
| return "Désolé, je n'ai pas pu générer de réponse." | |
| def chatbot(message, history): | |
| response = generate_response(message) | |
| return response | |
| iface = gr.ChatInterface( | |
| fn=chatbot, | |
| title="Chatbot Meta-Llama-3-8B-Instruct", | |
| description="Interagissez avec le modèle Meta-Llama-3-8B-Instruct." | |
| ) | |
| iface.launch() |