Spaces:
Running
Running
File size: 7,795 Bytes
3fd4b07 1d94ffa 3fd4b07 0a11885 9bd1513 6471baa c44e5a2 1d94ffa 9bd1513 1d94ffa 9bd1513 1d94ffa 9bd1513 1d94ffa 9bd1513 3fd4b07 9bd1513 c44e5a2 6471baa 9bd1513 6471baa 3fd4b07 6471baa 3fd4b07 6471baa 3fd4b07 6471baa 3fd4b07 6471baa 9bd1513 c44e5a2 1d94ffa 0a11885 6471baa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
"""
Gradio interface for the smolagents CodeAgent.
By default this script will NOT launch a local Gradio server. To allow
local runs (for testing) set the environment variable `RUN_LOCAL=1` or pass
`--run-local` on the command line. This prevents accidental local launches
when you intended to deploy to Hugging Face Spaces.
"""
import os
import sys
import logging
import json
from typing import List, Dict, Any
from code_agent import run_agent
# (Gradio update/analytics env flags removed per user request)
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def respond(prompt: str) -> str:
if not prompt or not prompt.strip():
return "Please provide a prompt."
try:
return run_agent(prompt)
except Exception as e:
logger.error("Agent failed: %s", e)
return f"Agent error: {type(e).__name__}: {str(e)[:200]}"
def extract_prompt_from_question(q: Dict[str, Any]) -> str:
"""Extract the actual question/prompt from a question dict."""
for key in ("question", "prompt", "input", "text", "task"):
if key in q and isinstance(q[key], str):
return q[key]
return str(q)
def fetch_all_questions() -> List[Dict[str, Any]]:
"""Fetch all questions from the scoring API."""
try:
from evaluation_client import ScoringAPIClient
client = ScoringAPIClient()
questions = client.get_questions()
return questions if questions else []
except Exception as e:
logger.error("Failed to fetch questions: %s", e)
return []
def answer_all_questions(questions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Answer all questions and return answers in submission format.
Args:
questions: List of question dicts from the scoring API.
Returns:
List of dicts with keys: task_id, submitted_answer.
"""
answers = []
total = len(questions)
for idx, q in enumerate(questions, start=1):
task_id = q.get("task_id") or q.get("id") or q.get("taskId")
if not task_id:
logger.warning("Question %d/%d: Missing task_id, skipping", idx, total)
continue
prompt = extract_prompt_from_question(q)
logger.info("Question %d/%d: task_id=%s, prompt_len=%d", idx, total, task_id, len(prompt))
try:
ans = run_agent(prompt)
ans = ans.strip()
logger.info(" β Answer: %s", ans[:60])
answers.append({"task_id": task_id, "submitted_answer": ans})
except Exception as e:
logger.error(" β Failed to answer: %s", type(e).__name__)
answers.append({"task_id": task_id, "submitted_answer": f"(error) {type(e).__name__}"})
logger.info("β Answered %d/%d questions", len(answers), total)
return answers
def submit_answers(username: str, agent_code_url: str, answers: List[Dict[str, Any]]) -> str:
"""Submit answers to the scoring API."""
try:
from evaluation_client import ScoringAPIClient
client = ScoringAPIClient()
resp = client.submit(username=username, agent_code=agent_code_url, answers=answers)
return f"β Submission successful! Response: {resp}"
except Exception as e:
logger.error("Submission failed: %s", e)
return f"ERROR: Submission failed: {e}"
_demo = None
def _get_demo():
"""Lazily import gradio and construct the demo to avoid network calls on import."""
global _demo
if _demo is not None:
return _demo
try:
import gradio as gr
except Exception as e:
logger.error("Failed to import gradio: %s", e)
raise
# We'll provide a readonly prompt field populated from the scoring API
# and buttons to fetch a random task and run the agent on it.
def fetch_random_task():
try:
from evaluation_client import ScoringAPIClient
client = ScoringAPIClient()
q = client.get_random_question()
if not q:
return "(no question returned)"
# extract prompt safely
for key in ("question", "prompt", "input", "text", "task"):
if key in q and isinstance(q[key], str):
return q[key]
return str(q)
except Exception as e:
logger.error("Failed to fetch random question: %s", e)
return f"(fetch error) {type(e).__name__}: {str(e)[:200]}"
def run_on_current(prompt_text: str):
if not prompt_text or not prompt_text.strip():
return "(no prompt to run on)"
try:
return respond(prompt_text)
except Exception as e:
logger.error("Agent run failed: %s", e)
return f"Agent error: {type(e).__name__}: {str(e)[:200]}"
with gr.Blocks() as demo:
gr.Markdown("# Agents Course β Final Agent Demo")
# Single question interface
with gr.Row():
prompt_box = gr.Textbox(label="Fetched Prompt (read-only)", lines=6)
with gr.Row():
fetch_btn = gr.Button("Fetch Random Task")
run_btn = gr.Button("Run Agent on Fetched Task")
single_output = gr.Textbox(label="Agent Response", lines=6)
# Batch processing interface
gr.Markdown("## Batch Processing")
questions_state = gr.State([])
answers_state = gr.State([])
status_box = gr.Textbox(label="Status", lines=4)
with gr.Row():
fetch_all_btn = gr.Button("Fetch All Questions")
answer_all_btn = gr.Button("Answer All Questions")
submit_btn = gr.Button("Submit All Answers")
with gr.Row():
username_box = gr.Textbox(label="Hugging Face Username", placeholder="your_hf_username")
agent_url_box = gr.Textbox(label="Agent Code URL", placeholder="https://huggingface.co/spaces/...")
batch_output = gr.Textbox(label="Batch Results", lines=12)
# Wire up the buttons
fetch_btn.click(fn=fetch_random_task, inputs=[], outputs=[prompt_box])
run_btn.click(fn=run_on_current, inputs=[prompt_box], outputs=[single_output])
def fetch_all_questions_wrapper():
questions = fetch_all_questions()
status = f"Fetched {len(questions)} questions"
return questions, [], status
def answer_all_questions_wrapper(questions):
if not questions:
return [], "No questions to answer"
answers = answer_all_questions(questions)
status = f"Answered {len(answers)} questions"
return answers, status
def submit_answers_wrapper(username, agent_url, answers):
if not answers:
return "No answers to submit"
if not username or not agent_url:
return "Please provide both username and agent code URL"
return submit_answers(username, agent_url, answers)
fetch_all_btn.click(
fn=fetch_all_questions_wrapper,
inputs=[],
outputs=[questions_state, answers_state, status_box]
)
answer_all_btn.click(
fn=answer_all_questions_wrapper,
inputs=[questions_state],
outputs=[answers_state, status_box]
)
submit_btn.click(
fn=submit_answers_wrapper,
inputs=[username_box, agent_url_box, answers_state],
outputs=[batch_output]
)
_demo = demo
return _demo
if __name__ == "__main__":
# Launch unconditionally when executed as a script.
try:
_get_demo().launch(server_name="0.0.0.0", server_port=7860, share=False)
except Exception as e:
logger.error("Failed to launch Gradio demo: %s", e)
|