Spaces:
Runtime error
Runtime error
Add training loop for RMSE-loss
Browse files
app.py
CHANGED
|
@@ -51,6 +51,15 @@ st.latex(r'''\bf{w}\leftarrow \bf{w}-\eta \frac{\partial\ell(\bf{X},\bf{y}, \bf{
|
|
| 51 |
|
| 52 |
|
| 53 |
# Fitting by the respective cost_function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
if cost_function == 'RMSE-Loss':
|
| 55 |
|
| 56 |
def loss(w):
|
|
@@ -60,6 +69,33 @@ if cost_function == 'RMSE-Loss':
|
|
| 60 |
st.latex(r'''\ell(X, y, w)=\frac{1}{m}||Xw - y||_{2}^2''')
|
| 61 |
st.latex(r'''\ell(X, y, w)=\frac{1}{m}\big(\sqrt{(Xw - y)\cdot(Xw - y)}\big)^2''')
|
| 62 |
st.latex(r'''\ell(X, y, w)= \frac{1}{m}\sum_1^m (\hat{y}_i - y_i)^2''')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
else:
|
| 64 |
st.write("You selected the Huber loss function.")
|
| 65 |
st.latex(r'''
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
# Fitting by the respective cost_function
|
| 54 |
+
w = jnp.array(np.random.random(3))
|
| 55 |
+
learning_rate = 0.05
|
| 56 |
+
NUM_ITER = 1000
|
| 57 |
+
|
| 58 |
+
fig, ax = plt.subplots(dpi=120)
|
| 59 |
+
ax.set_xlim((0,1))
|
| 60 |
+
ax.set_ylim((-5,26))
|
| 61 |
+
ax.scatter(X[:,1], y, c='#e76254' ,edgecolors='firebrick')
|
| 62 |
+
|
| 63 |
if cost_function == 'RMSE-Loss':
|
| 64 |
|
| 65 |
def loss(w):
|
|
|
|
| 69 |
st.latex(r'''\ell(X, y, w)=\frac{1}{m}||Xw - y||_{2}^2''')
|
| 70 |
st.latex(r'''\ell(X, y, w)=\frac{1}{m}\big(\sqrt{(Xw - y)\cdot(Xw - y)}\big)^2''')
|
| 71 |
st.latex(r'''\ell(X, y, w)= \frac{1}{m}\sum_1^m (\hat{y}_i - y_i)^2''')
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
progress_bar = st.progress(0)
|
| 75 |
+
status_text = st.empty()
|
| 76 |
+
grad_loss = jax.grad(loss)
|
| 77 |
+
|
| 78 |
+
# Perform gradient descent
|
| 79 |
+
for i in range(NUM_ITER):
|
| 80 |
+
# Update progress bar.
|
| 81 |
+
progress_bar.progress(i + 1)
|
| 82 |
+
|
| 83 |
+
# Update parameters.
|
| 84 |
+
w -= learning_rate * grad_loss(w)
|
| 85 |
+
|
| 86 |
+
# Update status text.
|
| 87 |
+
if (i+1)%100==0:
|
| 88 |
+
status_text.text(
|
| 89 |
+
'Trained loss is: %s' % loss(w))
|
| 90 |
+
|
| 91 |
+
# add a line to the plot
|
| 92 |
+
plt.plot(X[jnp.dot(X, w).argsort(), 1], jnp.dot(X, w).sort(), '--')
|
| 93 |
+
print(f"Trained loss at epoch #{i}:", loss(w))
|
| 94 |
+
plt.plot(X[jnp.dot(X, w).argsort(), 1], jnp.dot(X, w).sort(), '--', label='Final line')
|
| 95 |
+
|
| 96 |
+
status_text.text('Done!')
|
| 97 |
+
|
| 98 |
+
|
| 99 |
else:
|
| 100 |
st.write("You selected the Huber loss function.")
|
| 101 |
st.latex(r'''
|