Spaces:
Sleeping
Sleeping
Commit
路
9f198ef
1
Parent(s):
1364165
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Define the Gradio interface
|
| 2 |
interface = gr.Interface(
|
| 3 |
fn=make_prediction, # Function to be called for predictions
|
|
@@ -11,6 +110,6 @@ interface = gr.Interface(
|
|
| 11 |
# Launch the Gradio interface with authentication for the specified users
|
| 12 |
interface.launch(auth=[
|
| 13 |
("Andrea Zampetti", "andreazampetti"),
|
| 14 |
-
("Luca Santini", "lucasantini"),
|
| 15 |
("Ana Ben铆tez L贸pez", "anaben铆tezl贸pez")
|
| 16 |
])
|
|
|
|
| 1 |
+
# Import the libraries
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from tensorflow.keras.models import load_model
|
| 5 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
| 6 |
+
from tensorflow.keras.applications.convnext import preprocess_input
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
# Load the model
|
| 10 |
+
model = load_model('models/ConvNeXtBase_80_tresh_spp.tf')
|
| 11 |
+
|
| 12 |
+
# Load the taxonomy .csv
|
| 13 |
+
taxo_df = pd.read_csv('taxonomy/taxonomy_mapping.csv')
|
| 14 |
+
taxo_df['species'] = taxo_df['species'].str.replace('_', ' ')
|
| 15 |
+
|
| 16 |
+
# Available taxonomic levels
|
| 17 |
+
taxonomic_levels = ['species', 'genus', 'family', 'order', 'class']
|
| 18 |
+
|
| 19 |
+
# Function to map predicted class index to class name at the selected taxonomic level
|
| 20 |
+
def get_class_name(predicted_class, taxonomic_level):
|
| 21 |
+
unique_labels = sorted(taxo_df[taxonomic_level].unique())
|
| 22 |
+
return unique_labels[predicted_class]
|
| 23 |
+
|
| 24 |
+
# Function to aggregate predictions to a higher taxonomic level
|
| 25 |
+
def aggregate_predictions(predicted_probs, taxonomic_level, class_names):
|
| 26 |
+
unique_labels = sorted(taxo_df[taxonomic_level].unique())
|
| 27 |
+
aggregated_predictions = np.zeros((predicted_probs.shape[0], len(unique_labels)))
|
| 28 |
+
|
| 29 |
+
for idx, row in taxo_df.iterrows():
|
| 30 |
+
species = row['species']
|
| 31 |
+
higher_level = row[taxonomic_level]
|
| 32 |
+
|
| 33 |
+
species_index = class_names.index(species) # Index of the species in the prediction array
|
| 34 |
+
higher_level_index = unique_labels.index(higher_level)
|
| 35 |
+
|
| 36 |
+
aggregated_predictions[:, higher_level_index] += predicted_probs[:, species_index]
|
| 37 |
+
|
| 38 |
+
return aggregated_predictions, unique_labels
|
| 39 |
+
|
| 40 |
+
# Function to load and preprocess the image
|
| 41 |
+
def load_and_preprocess_image(image, target_size=(224, 224)):
|
| 42 |
+
# Resize the image
|
| 43 |
+
img_array = img_to_array(image.resize(target_size))
|
| 44 |
+
# Expand the dimensions to match model input
|
| 45 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 46 |
+
# Preprocess the image
|
| 47 |
+
img_array = preprocess_input(img_array)
|
| 48 |
+
return img_array
|
| 49 |
+
|
| 50 |
+
# Function to make predictions
|
| 51 |
+
def make_prediction(image, taxonomic_level):
|
| 52 |
+
# Preprocess the image
|
| 53 |
+
img_array = load_and_preprocess_image(image)
|
| 54 |
+
|
| 55 |
+
# Get the class names from the 'species' column
|
| 56 |
+
class_names = sorted(taxo_df['species'].unique()) # Add this line to define class_names
|
| 57 |
+
|
| 58 |
+
# Make a prediction
|
| 59 |
+
prediction = model.predict(img_array)
|
| 60 |
+
|
| 61 |
+
# Aggregate predictions based on the selected taxonomic level
|
| 62 |
+
aggregated_predictions, aggregated_class_labels = aggregate_predictions(prediction, taxonomic_level, class_names)
|
| 63 |
+
|
| 64 |
+
# Get the top 5 predictions
|
| 65 |
+
top_indices = np.argsort(aggregated_predictions[0])[-5:][::-1]
|
| 66 |
+
|
| 67 |
+
# Get predicted class for the top prediction
|
| 68 |
+
predicted_class_index = np.argmax(aggregated_predictions)
|
| 69 |
+
predicted_class_name = aggregated_class_labels[predicted_class_index]
|
| 70 |
+
|
| 71 |
+
# Check if common name should be displayed (only at species level)
|
| 72 |
+
if taxonomic_level == "species":
|
| 73 |
+
predicted_common_name = taxo_df[taxo_df[taxonomic_level] == predicted_class_name]['common_name'].values[0]
|
| 74 |
+
output_text = f"<h1 style='font-weight: bold;'><span style='font-style: italic;'>{predicted_class_name}</span> ({predicted_common_name})</h1>"
|
| 75 |
+
else:
|
| 76 |
+
output_text = f"<h1 style='font-weight: bold;'>{predicted_class_name}</h1>"
|
| 77 |
+
|
| 78 |
+
# Add the top 5 predictions
|
| 79 |
+
output_text += "<h4 style='font-weight: bold; font-size: 1.2em;'>Top 5 Predictions:</h4>"
|
| 80 |
+
|
| 81 |
+
for i in top_indices:
|
| 82 |
+
class_name = aggregated_class_labels[i]
|
| 83 |
+
|
| 84 |
+
if taxonomic_level == "species":
|
| 85 |
+
# Display common names only at species level and make it italic
|
| 86 |
+
common_name = taxo_df[taxo_df[taxonomic_level] == class_name]['common_name'].values[0]
|
| 87 |
+
confidence_percentage = aggregated_predictions[0][i] * 100
|
| 88 |
+
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
| 89 |
+
f"<span style='font-style: italic;'>{class_name}</span> (<span>{common_name}</span>)" \
|
| 90 |
+
f"<span style='margin-left: auto;'>{confidence_percentage:.2f}%</span></div>"
|
| 91 |
+
else:
|
| 92 |
+
# No common names at higher taxonomic levels
|
| 93 |
+
confidence_percentage = aggregated_predictions[0][i] * 100
|
| 94 |
+
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
| 95 |
+
f"<span>{class_name}</span>" \
|
| 96 |
+
f"<span style='margin-left: auto;'>{confidence_percentage:.2f}%</span></div>"
|
| 97 |
+
|
| 98 |
+
return output_text
|
| 99 |
+
|
| 100 |
# Define the Gradio interface
|
| 101 |
interface = gr.Interface(
|
| 102 |
fn=make_prediction, # Function to be called for predictions
|
|
|
|
| 110 |
# Launch the Gradio interface with authentication for the specified users
|
| 111 |
interface.launch(auth=[
|
| 112 |
("Andrea Zampetti", "andreazampetti"),
|
| 113 |
+
("Luca Santini", "lucasantini"),
|
| 114 |
("Ana Ben铆tez L贸pez", "anaben铆tezl贸pez")
|
| 115 |
])
|