updated numerical feature engineering
Browse files- src/ProcessOneSingleCampaign.py +289 -41
src/ProcessOneSingleCampaign.py
CHANGED
|
@@ -1,3 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
# Set gensim data directory to a writable location at the very start
|
| 3 |
os.environ['GENSIM_DATA_DIR'] = '/tmp/gensim-data'
|
|
@@ -9,29 +25,57 @@ except Exception as e:
|
|
| 9 |
|
| 10 |
import json
|
| 11 |
import numpy as np
|
| 12 |
-
from typing import Dict
|
| 13 |
import torch
|
| 14 |
from transformers import AutoTokenizer, AutoModel
|
| 15 |
import gc
|
| 16 |
import gensim.downloader
|
| 17 |
|
| 18 |
class CampaignProcessor:
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
self.data = data
|
| 21 |
self.categories = sorted(list(set(camp.get('raw_category', '') for camp in self.data)))
|
| 22 |
self.lazy_load = lazy_load
|
| 23 |
|
| 24 |
-
|
| 25 |
-
self.
|
| 26 |
-
self.
|
| 27 |
-
self.
|
| 28 |
-
self.
|
|
|
|
| 29 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 30 |
|
|
|
|
| 31 |
if not lazy_load:
|
| 32 |
self._load_models()
|
| 33 |
|
| 34 |
def _load_models(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
print("Loading NLP models...")
|
| 36 |
# Cache models locally to avoid downloading every time
|
| 37 |
cache_dir = "/tmp/model_cache"
|
|
@@ -120,33 +164,60 @@ class CampaignProcessor:
|
|
| 120 |
raise e
|
| 121 |
|
| 122 |
def _ensure_models_loaded(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
if self.model is None or self.tokenizer is None or self.RiskandBlurb_model is None or self.RiskandBlurb_tokenizer is None or self.glove is None:
|
| 124 |
self._load_models()
|
| 125 |
|
| 126 |
-
def _process_text_embedding(self, text, max_length, tokenizer, model):
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
if self.device.type == 'cuda':
|
| 129 |
torch.cuda.empty_cache()
|
| 130 |
gc.collect()
|
| 131 |
|
|
|
|
| 132 |
inputs = tokenizer(text,
|
| 133 |
padding=True,
|
| 134 |
truncation=True,
|
| 135 |
max_length=max_length,
|
| 136 |
return_tensors="pt")
|
| 137 |
|
|
|
|
| 138 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 139 |
|
|
|
|
| 140 |
with torch.no_grad():
|
| 141 |
outputs = model(**inputs)
|
| 142 |
|
|
|
|
| 143 |
attention_mask = inputs['attention_mask']
|
| 144 |
token_embeddings = outputs.last_hidden_state
|
| 145 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 146 |
sentence_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 147 |
|
|
|
|
| 148 |
embedding = sentence_embeddings.cpu().numpy()
|
| 149 |
|
|
|
|
| 150 |
del inputs, outputs, token_embeddings, sentence_embeddings
|
| 151 |
if self.device.type == 'cuda':
|
| 152 |
torch.cuda.empty_cache()
|
|
@@ -154,8 +225,17 @@ class CampaignProcessor:
|
|
| 154 |
|
| 155 |
return embedding[0]
|
| 156 |
|
| 157 |
-
def _get_glove_embedding(self, text, dim=100):
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
if not text:
|
| 160 |
return np.zeros(dim)
|
| 161 |
|
|
@@ -164,16 +244,30 @@ class CampaignProcessor:
|
|
| 164 |
words = text.split()
|
| 165 |
vectors = []
|
| 166 |
|
|
|
|
| 167 |
for word in words:
|
| 168 |
if word in self.glove:
|
| 169 |
vectors.append(self.glove[word])
|
| 170 |
|
|
|
|
| 171 |
if vectors:
|
| 172 |
return np.mean(vectors, axis=0)
|
| 173 |
else:
|
| 174 |
return np.zeros(dim)
|
| 175 |
|
| 176 |
-
def process_description_embedding(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
self._ensure_models_loaded()
|
| 178 |
|
| 179 |
try:
|
|
@@ -185,7 +279,17 @@ class CampaignProcessor:
|
|
| 185 |
print(f"Error processing description: {str(e)}")
|
| 186 |
return np.zeros(768), 0
|
| 187 |
|
| 188 |
-
def process_riskandchallenges_embedding(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
self._ensure_models_loaded()
|
| 190 |
|
| 191 |
try:
|
|
@@ -195,7 +299,17 @@ class CampaignProcessor:
|
|
| 195 |
print(f"Error processing risk statement: {str(e)}")
|
| 196 |
return np.zeros(384)
|
| 197 |
|
| 198 |
-
def process_blurb(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
self._ensure_models_loaded()
|
| 200 |
|
| 201 |
try:
|
|
@@ -205,7 +319,16 @@ class CampaignProcessor:
|
|
| 205 |
print(f"Error processing blurb: {str(e)}")
|
| 206 |
return np.zeros(384)
|
| 207 |
|
| 208 |
-
def process_category(self, campaign: Dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
try:
|
| 210 |
# All categories in the dataset
|
| 211 |
fixed_categories = [
|
|
@@ -222,7 +345,17 @@ class CampaignProcessor:
|
|
| 222 |
print(f"Error processing category: {str(e)}")
|
| 223 |
return [0] * 15
|
| 224 |
|
| 225 |
-
def process_subcategory_embedding(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
self._ensure_models_loaded()
|
| 227 |
|
| 228 |
try:
|
|
@@ -232,7 +365,17 @@ class CampaignProcessor:
|
|
| 232 |
print(f"Error processing subcategory: {str(e)}")
|
| 233 |
return np.zeros(100)
|
| 234 |
|
| 235 |
-
def process_country_embedding(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
self._ensure_models_loaded()
|
| 237 |
|
| 238 |
try:
|
|
@@ -242,19 +385,131 @@ class CampaignProcessor:
|
|
| 242 |
print(f"Error processing country: {str(e)}")
|
| 243 |
return np.zeros(100)
|
| 244 |
|
| 245 |
-
def process_funding_goal(self, campaign: Dict, idx: int):
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
-
def process_previous_funding_goal(self, campaign: Dict, idx: int):
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
-
def process_previous_pledged(self, campaign: Dict, idx: int):
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
-
def calculate_previous_sucess_rate(self, campaign: Dict, idx: int):
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
-
def process_campaign(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
self._ensure_models_loaded()
|
| 259 |
|
| 260 |
# Generate embeddings for text fields
|
|
@@ -274,22 +529,15 @@ class CampaignProcessor:
|
|
| 274 |
'country_embedding': self.process_country_embedding(campaign, idx).tolist()
|
| 275 |
}
|
| 276 |
|
| 277 |
-
# Process
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
]
|
| 284 |
-
|
| 285 |
-
# Process numerical features or use values from input
|
| 286 |
-
for field_name, processor_func in numerical_fields:
|
| 287 |
-
if field_name in campaign:
|
| 288 |
-
result[field_name] = campaign[field_name]
|
| 289 |
-
else:
|
| 290 |
-
result[field_name] = processor_func(campaign, idx)
|
| 291 |
|
| 292 |
-
#
|
| 293 |
for field in ['image_count', 'video_count', 'campaign_duration', 'previous_projects_count']:
|
| 294 |
result[field] = int(campaign.get(field, 0))
|
| 295 |
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Campaign Data Processor for Kickstarter Prediction
|
| 3 |
+
|
| 4 |
+
This module handles the preprocessing of raw Kickstarter campaign data,
|
| 5 |
+
generating text embeddings and preparing numerical features for prediction.
|
| 6 |
+
|
| 7 |
+
Key functionality:
|
| 8 |
+
- Longformer embeddings for project descriptions
|
| 9 |
+
- Sentence transformer embeddings for blurbs and risk statements
|
| 10 |
+
- GloVe embeddings for categories and countries
|
| 11 |
+
- Normalization of numerical features
|
| 12 |
+
|
| 13 |
+
Author: Angus Fung
|
| 14 |
+
Date: April 2025
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
import os
|
| 18 |
# Set gensim data directory to a writable location at the very start
|
| 19 |
os.environ['GENSIM_DATA_DIR'] = '/tmp/gensim-data'
|
|
|
|
| 25 |
|
| 26 |
import json
|
| 27 |
import numpy as np
|
| 28 |
+
from typing import Dict, List, Tuple, Any, Optional
|
| 29 |
import torch
|
| 30 |
from transformers import AutoTokenizer, AutoModel
|
| 31 |
import gc
|
| 32 |
import gensim.downloader
|
| 33 |
|
| 34 |
class CampaignProcessor:
|
| 35 |
+
"""
|
| 36 |
+
Processor for Kickstarter campaign data.
|
| 37 |
+
|
| 38 |
+
This class handles the preprocessing of raw campaign data, transforming
|
| 39 |
+
text and categorical features into embeddings using various NLP models
|
| 40 |
+
and preparing numerical features for the prediction model.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
def __init__(self, data: List[Dict], lazy_load: bool = False):
|
| 44 |
+
"""
|
| 45 |
+
Initialize the CampaignProcessor.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
data (List[Dict]): List of campaign dictionaries to process
|
| 49 |
+
lazy_load (bool): If True, models will be loaded only when needed
|
| 50 |
+
rather than at initialization time
|
| 51 |
+
"""
|
| 52 |
self.data = data
|
| 53 |
self.categories = sorted(list(set(camp.get('raw_category', '') for camp in self.data)))
|
| 54 |
self.lazy_load = lazy_load
|
| 55 |
|
| 56 |
+
# Initialize model variables (to be loaded later)
|
| 57 |
+
self.tokenizer = None # Longformer tokenizer for descriptions
|
| 58 |
+
self.model = None # Longformer model for descriptions
|
| 59 |
+
self.RiskandBlurb_tokenizer = None # MiniLM tokenizer for blurb and risk
|
| 60 |
+
self.RiskandBlurb_model = None # MiniLM model for blurb and risk
|
| 61 |
+
self.glove = None # GloVe word vectors for categories and countries
|
| 62 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 63 |
|
| 64 |
+
# Load models at initialization if not using lazy loading
|
| 65 |
if not lazy_load:
|
| 66 |
self._load_models()
|
| 67 |
|
| 68 |
def _load_models(self):
|
| 69 |
+
"""
|
| 70 |
+
Load all NLP models required for processing campaign data.
|
| 71 |
+
|
| 72 |
+
This method loads:
|
| 73 |
+
- Longformer for description embeddings
|
| 74 |
+
- MiniLM for blurb and risk embeddings
|
| 75 |
+
- GloVe for category and country embeddings
|
| 76 |
+
|
| 77 |
+
Models are cached to avoid reloading and moved to the appropriate device.
|
| 78 |
+
"""
|
| 79 |
print("Loading NLP models...")
|
| 80 |
# Cache models locally to avoid downloading every time
|
| 81 |
cache_dir = "/tmp/model_cache"
|
|
|
|
| 164 |
raise e
|
| 165 |
|
| 166 |
def _ensure_models_loaded(self):
|
| 167 |
+
"""
|
| 168 |
+
Ensure all required models are loaded.
|
| 169 |
+
|
| 170 |
+
This is called before any processing to make sure models are ready,
|
| 171 |
+
particularly important when using lazy loading.
|
| 172 |
+
"""
|
| 173 |
if self.model is None or self.tokenizer is None or self.RiskandBlurb_model is None or self.RiskandBlurb_tokenizer is None or self.glove is None:
|
| 174 |
self._load_models()
|
| 175 |
|
| 176 |
+
def _process_text_embedding(self, text: str, max_length: int, tokenizer: AutoTokenizer, model: AutoModel) -> np.ndarray:
|
| 177 |
+
"""
|
| 178 |
+
Generate embedding for text using the specified model and tokenizer.
|
| 179 |
+
|
| 180 |
+
This method handles tokenization, model inference, and pooling to
|
| 181 |
+
create a single vector representation of the input text.
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
text (str): Text to embed
|
| 185 |
+
max_length (int): Maximum token length for the model
|
| 186 |
+
tokenizer (AutoTokenizer): Tokenizer to use
|
| 187 |
+
model (AutoModel): Model to use for embedding generation
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
np.ndarray: Embedding vector for the text
|
| 191 |
+
"""
|
| 192 |
+
# Clean up memory before processing
|
| 193 |
if self.device.type == 'cuda':
|
| 194 |
torch.cuda.empty_cache()
|
| 195 |
gc.collect()
|
| 196 |
|
| 197 |
+
# Tokenize the text
|
| 198 |
inputs = tokenizer(text,
|
| 199 |
padding=True,
|
| 200 |
truncation=True,
|
| 201 |
max_length=max_length,
|
| 202 |
return_tensors="pt")
|
| 203 |
|
| 204 |
+
# Move inputs to device
|
| 205 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 206 |
|
| 207 |
+
# Generate embeddings
|
| 208 |
with torch.no_grad():
|
| 209 |
outputs = model(**inputs)
|
| 210 |
|
| 211 |
+
# Mean pooling - take average of all token embeddings
|
| 212 |
attention_mask = inputs['attention_mask']
|
| 213 |
token_embeddings = outputs.last_hidden_state
|
| 214 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 215 |
sentence_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 216 |
|
| 217 |
+
# Convert to numpy array
|
| 218 |
embedding = sentence_embeddings.cpu().numpy()
|
| 219 |
|
| 220 |
+
# Clean up to prevent memory leaks
|
| 221 |
del inputs, outputs, token_embeddings, sentence_embeddings
|
| 222 |
if self.device.type == 'cuda':
|
| 223 |
torch.cuda.empty_cache()
|
|
|
|
| 225 |
|
| 226 |
return embedding[0]
|
| 227 |
|
| 228 |
+
def _get_glove_embedding(self, text: str, dim: int = 100) -> np.ndarray:
|
| 229 |
+
"""
|
| 230 |
+
Generate GloVe embedding for a text by averaging word vectors.
|
| 231 |
+
|
| 232 |
+
Args:
|
| 233 |
+
text (str): Text to embed
|
| 234 |
+
dim (int): Dimension of the GloVe embeddings
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
np.ndarray: Averaged GloVe embedding for the text
|
| 238 |
+
"""
|
| 239 |
if not text:
|
| 240 |
return np.zeros(dim)
|
| 241 |
|
|
|
|
| 244 |
words = text.split()
|
| 245 |
vectors = []
|
| 246 |
|
| 247 |
+
# Collect vectors for words that exist in the vocabulary
|
| 248 |
for word in words:
|
| 249 |
if word in self.glove:
|
| 250 |
vectors.append(self.glove[word])
|
| 251 |
|
| 252 |
+
# Average vectors if any exist, otherwise return zeros
|
| 253 |
if vectors:
|
| 254 |
return np.mean(vectors, axis=0)
|
| 255 |
else:
|
| 256 |
return np.zeros(dim)
|
| 257 |
|
| 258 |
+
def process_description_embedding(self, campaign: Dict, idx: int) -> Tuple[np.ndarray, int]:
|
| 259 |
+
"""
|
| 260 |
+
Process the project description to generate a Longformer embedding.
|
| 261 |
+
|
| 262 |
+
Args:
|
| 263 |
+
campaign (Dict): Campaign data
|
| 264 |
+
idx (int): Index of the campaign
|
| 265 |
+
|
| 266 |
+
Returns:
|
| 267 |
+
Tuple containing:
|
| 268 |
+
- np.ndarray: Longformer embedding of the description
|
| 269 |
+
- int: Word count of the description
|
| 270 |
+
"""
|
| 271 |
self._ensure_models_loaded()
|
| 272 |
|
| 273 |
try:
|
|
|
|
| 279 |
print(f"Error processing description: {str(e)}")
|
| 280 |
return np.zeros(768), 0
|
| 281 |
|
| 282 |
+
def process_riskandchallenges_embedding(self, campaign: Dict, idx: int) -> np.ndarray:
|
| 283 |
+
"""
|
| 284 |
+
Process the risks and challenges section to generate a MiniLM embedding.
|
| 285 |
+
|
| 286 |
+
Args:
|
| 287 |
+
campaign (Dict): Campaign data
|
| 288 |
+
idx (int): Index of the campaign
|
| 289 |
+
|
| 290 |
+
Returns:
|
| 291 |
+
np.ndarray: MiniLM embedding of the risks section
|
| 292 |
+
"""
|
| 293 |
self._ensure_models_loaded()
|
| 294 |
|
| 295 |
try:
|
|
|
|
| 299 |
print(f"Error processing risk statement: {str(e)}")
|
| 300 |
return np.zeros(384)
|
| 301 |
|
| 302 |
+
def process_blurb(self, campaign: Dict, idx: int) -> np.ndarray:
|
| 303 |
+
"""
|
| 304 |
+
Process the project blurb to generate a MiniLM embedding.
|
| 305 |
+
|
| 306 |
+
Args:
|
| 307 |
+
campaign (Dict): Campaign data
|
| 308 |
+
idx (int): Index of the campaign
|
| 309 |
+
|
| 310 |
+
Returns:
|
| 311 |
+
np.ndarray: MiniLM embedding of the blurb
|
| 312 |
+
"""
|
| 313 |
self._ensure_models_loaded()
|
| 314 |
|
| 315 |
try:
|
|
|
|
| 319 |
print(f"Error processing blurb: {str(e)}")
|
| 320 |
return np.zeros(384)
|
| 321 |
|
| 322 |
+
def process_category(self, campaign: Dict) -> List[int]:
|
| 323 |
+
"""
|
| 324 |
+
Process the project category into a one-hot encoding.
|
| 325 |
+
|
| 326 |
+
Args:
|
| 327 |
+
campaign (Dict): Campaign data
|
| 328 |
+
|
| 329 |
+
Returns:
|
| 330 |
+
List[int]: One-hot encoding of the category
|
| 331 |
+
"""
|
| 332 |
try:
|
| 333 |
# All categories in the dataset
|
| 334 |
fixed_categories = [
|
|
|
|
| 345 |
print(f"Error processing category: {str(e)}")
|
| 346 |
return [0] * 15
|
| 347 |
|
| 348 |
+
def process_subcategory_embedding(self, campaign: Dict, idx: int) -> np.ndarray:
|
| 349 |
+
"""
|
| 350 |
+
Process the project subcategory to generate a GloVe embedding.
|
| 351 |
+
|
| 352 |
+
Args:
|
| 353 |
+
campaign (Dict): Campaign data
|
| 354 |
+
idx (int): Index of the campaign
|
| 355 |
+
|
| 356 |
+
Returns:
|
| 357 |
+
np.ndarray: GloVe embedding of the subcategory
|
| 358 |
+
"""
|
| 359 |
self._ensure_models_loaded()
|
| 360 |
|
| 361 |
try:
|
|
|
|
| 365 |
print(f"Error processing subcategory: {str(e)}")
|
| 366 |
return np.zeros(100)
|
| 367 |
|
| 368 |
+
def process_country_embedding(self, campaign: Dict, idx: int) -> np.ndarray:
|
| 369 |
+
"""
|
| 370 |
+
Process the project country to generate a GloVe embedding.
|
| 371 |
+
|
| 372 |
+
Args:
|
| 373 |
+
campaign (Dict): Campaign data
|
| 374 |
+
idx (int): Index of the campaign
|
| 375 |
+
|
| 376 |
+
Returns:
|
| 377 |
+
np.ndarray: GloVe embedding of the country
|
| 378 |
+
"""
|
| 379 |
self._ensure_models_loaded()
|
| 380 |
|
| 381 |
try:
|
|
|
|
| 385 |
print(f"Error processing country: {str(e)}")
|
| 386 |
return np.zeros(100)
|
| 387 |
|
| 388 |
+
def process_funding_goal(self, campaign: Dict, idx: int) -> float:
|
| 389 |
+
"""
|
| 390 |
+
Process campaign funding goal with logarithmic compression.
|
| 391 |
+
|
| 392 |
+
Applies Log1p transformation with base 10 to compress extreme values while
|
| 393 |
+
preserving relative differences between funding goals.
|
| 394 |
+
|
| 395 |
+
Args:
|
| 396 |
+
campaign (Dict): Campaign data
|
| 397 |
+
idx (int): Index of the campaign
|
| 398 |
+
|
| 399 |
+
Returns:
|
| 400 |
+
float: The transformed funding goal
|
| 401 |
+
"""
|
| 402 |
+
try:
|
| 403 |
+
goal = float(campaign.get('funding_goal', 0))
|
| 404 |
+
|
| 405 |
+
# Log1p transformation, good for general compression while preserving relative differences
|
| 406 |
+
transformed_goal = np.log1p(goal)/np.log(10)
|
| 407 |
+
|
| 408 |
+
return transformed_goal
|
| 409 |
+
|
| 410 |
+
except Exception as e:
|
| 411 |
+
print(f"Error processing funding goal for campaign {idx}: {str(e)}")
|
| 412 |
+
return 0.0
|
| 413 |
|
| 414 |
+
def process_previous_funding_goal(self, campaign: Dict, idx: int) -> float:
|
| 415 |
+
"""
|
| 416 |
+
Process previous campaign funding goal with logarithmic compression.
|
| 417 |
+
|
| 418 |
+
Applies Log1p transformation with base 10 to compress extreme values while
|
| 419 |
+
preserving relative differences between previous funding goals.
|
| 420 |
+
|
| 421 |
+
Args:
|
| 422 |
+
campaign (Dict): Campaign data
|
| 423 |
+
idx (int): Index of the campaign
|
| 424 |
+
|
| 425 |
+
Returns:
|
| 426 |
+
float: The transformed previous funding goal
|
| 427 |
+
"""
|
| 428 |
+
try:
|
| 429 |
+
previous_goal = float(campaign.get('previous_funding_goal', 0))
|
| 430 |
+
|
| 431 |
+
# Log1p transformation, good for general compression while preserving relative differences
|
| 432 |
+
transformed_goal = np.log1p(previous_goal)/np.log(10)
|
| 433 |
+
|
| 434 |
+
return transformed_goal
|
| 435 |
+
|
| 436 |
+
except Exception as e:
|
| 437 |
+
print(f"Error processing previous funding goal for campaign {idx}: {str(e)}")
|
| 438 |
+
return 0.0
|
| 439 |
|
| 440 |
+
def process_previous_pledged(self, campaign: Dict, idx: int) -> float:
|
| 441 |
+
"""
|
| 442 |
+
Process previous campaign pledged amount with logarithmic compression.
|
| 443 |
+
|
| 444 |
+
Applies Log1p transformation with base 10 to compress extreme values while
|
| 445 |
+
preserving relative differences between previous pledged amounts.
|
| 446 |
+
|
| 447 |
+
Args:
|
| 448 |
+
campaign (Dict): Campaign data
|
| 449 |
+
idx (int): Index of the campaign
|
| 450 |
+
|
| 451 |
+
Returns:
|
| 452 |
+
float: The transformed previous pledged amount
|
| 453 |
+
"""
|
| 454 |
+
try:
|
| 455 |
+
pledged = float(campaign.get('previous_pledged', 0))
|
| 456 |
+
|
| 457 |
+
# Log1p transformation, good for general compression while preserving relative differences
|
| 458 |
+
transformed_pledge = np.log1p(pledged)/np.log(10)
|
| 459 |
+
|
| 460 |
+
return transformed_pledge
|
| 461 |
+
|
| 462 |
+
except Exception as e:
|
| 463 |
+
print(f"Error processing pledge amount for campaign {idx}: {str(e)}")
|
| 464 |
+
return 0.0
|
| 465 |
|
| 466 |
+
def calculate_previous_sucess_rate(self, campaign: Dict, idx: int) -> float:
|
| 467 |
+
"""
|
| 468 |
+
Calculate success rate of creator's previous campaigns.
|
| 469 |
+
|
| 470 |
+
Computes the ratio of successful previous projects to total previous projects.
|
| 471 |
+
|
| 472 |
+
Args:
|
| 473 |
+
campaign (Dict): Campaign data
|
| 474 |
+
idx (int): Index of the campaign
|
| 475 |
+
|
| 476 |
+
Returns:
|
| 477 |
+
float: The previous success rate (0-1)
|
| 478 |
+
"""
|
| 479 |
+
try:
|
| 480 |
+
previousProjects = float(campaign.get('previous_projects_count', 0))
|
| 481 |
+
previousSuccessfulProjects = float(campaign.get('previous_successful_projects', 0))
|
| 482 |
+
|
| 483 |
+
if previousProjects == 0.0:
|
| 484 |
+
return 0.0
|
| 485 |
+
else:
|
| 486 |
+
previous_success_rate = previousSuccessfulProjects / previousProjects
|
| 487 |
+
return previous_success_rate
|
| 488 |
+
|
| 489 |
+
except Exception as e:
|
| 490 |
+
print(f"Error calculating previous success rate for campaign {idx}: {str(e)}")
|
| 491 |
+
return 0.0
|
| 492 |
|
| 493 |
+
def process_campaign(self, campaign: Dict, idx: int) -> Dict:
|
| 494 |
+
"""
|
| 495 |
+
Process a single campaign to prepare all required features for prediction.
|
| 496 |
+
|
| 497 |
+
This is the main method that processes a raw campaign and prepares
|
| 498 |
+
all features (embeddings and numerical) for the prediction model.
|
| 499 |
+
|
| 500 |
+
Processing steps include:
|
| 501 |
+
- Text embedding generation using appropriate models
|
| 502 |
+
- Category and country embedding through GloVe
|
| 503 |
+
- Logarithmic transformation of monetary values
|
| 504 |
+
- Normalization of numerical features
|
| 505 |
+
|
| 506 |
+
Args:
|
| 507 |
+
campaign (Dict): Raw campaign data
|
| 508 |
+
idx (int): Index of the campaign
|
| 509 |
+
|
| 510 |
+
Returns:
|
| 511 |
+
Dict: Processed data with all features ready for prediction
|
| 512 |
+
"""
|
| 513 |
self._ensure_models_loaded()
|
| 514 |
|
| 515 |
# Generate embeddings for text fields
|
|
|
|
| 529 |
'country_embedding': self.process_country_embedding(campaign, idx).tolist()
|
| 530 |
}
|
| 531 |
|
| 532 |
+
# Process financial features with logarithmic transformation
|
| 533 |
+
result['funding_goal'] = self.process_funding_goal(campaign, idx)
|
| 534 |
+
result['previous_funding_goal'] = self.process_previous_funding_goal(campaign, idx)
|
| 535 |
+
result['previous_pledged'] = self.process_previous_pledged(campaign, idx)
|
| 536 |
+
|
| 537 |
+
# Calculate success rate based on previous projects
|
| 538 |
+
result['previous_success_rate'] = self.calculate_previous_sucess_rate(campaign, idx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
|
| 540 |
+
# Extract simple integer features
|
| 541 |
for field in ['image_count', 'video_count', 'campaign_duration', 'previous_projects_count']:
|
| 542 |
result[field] = int(campaign.get(field, 0))
|
| 543 |
|