akhaliq's picture
akhaliq HF Staff
Update app.py
e0bd939 verified
raw
history blame
12.7 kB
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.pipelines import LongCatImagePipeline, LongCatImageEditPipeline
import numpy as np
# 1. DEFINE THE CUSTOM THEME CLASS (Programmatic Theming, No Custom CSS)
# Inherit from Base and use .set() to achieve the Apple aesthetic.
class AppleStyleTheme(gr.themes.Base):
def __init__(
self,
# Core Parameters for Apple Aesthetic
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.gray,
neutral_hue=gr.themes.colors.neutral,
radius_size=gr.themes.sizes.radius_lg, # Large radius for modern rounded look
font=["system-ui", "sans-serif"], # Use system fonts for native feel
spacing_size=gr.themes.sizes.spacing_lg,
text_size=gr.themes.sizes.text_md,
**kwargs
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
radius_size=radius_size,
font=font,
spacing_size=spacing_size,
text_size=text_size,
**kwargs
)
# Use .set() to fine-tune variables beyond the core 8
self.set(
# General clean white/light gray background
body_background_fill="*neutral_50",
block_background_fill="white",
# Remove default shadows for a flatter, cleaner look
block_shadow="none",
# Add a subtle border/ring for 'card' definition
block_border_color="*neutral_200",
block_border_width="1px",
# Customize button look (Primary blue is defined by primary_hue=blue)
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_400",
button_primary_border_color="*primary_500",
# Tabs (Segmented control look is largely handled by rounded corners and soft theme)
tabs_border_color="*neutral_200",
tab_border_color="*neutral_100",
tab_border_width="0",
)
# Instantiate the custom theme
apple_theme = AppleStyleTheme()
# --- End Theme Definition ---
# --- Model Loading (Kept for completeness) ---
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Text-to-Image Model
t2i_model_id = 'meituan-longcat/LongCat-Image'
print(f"🔄 Loading Text-to-Image model from {t2i_model_id}...")
t2i_text_processor = AutoProcessor.from_pretrained(
t2i_model_id,
subfolder='tokenizer'
)
t2i_transformer = LongCatImageTransformer2DModel.from_pretrained(
t2i_model_id,
subfolder='transformer',
torch_dtype=torch.bfloat16,
use_safetensors=True
).to(device)
t2i_pipe = LongCatImagePipeline.from_pretrained(
t2i_model_id,
transformer=t2i_transformer,
text_processor=t2i_text_processor,
)
t2i_pipe.to(device, torch.bfloat16)
print(f"✅ Text-to-Image model loaded successfully")
# Image Edit Model
edit_model_id = 'meituan-longcat/LongCat-Image-Edit'
print(f"🔄 Loading Image Edit model from {edit_model_id}...")
edit_text_processor = AutoProcessor.from_pretrained(
edit_model_id,
subfolder='tokenizer'
)
edit_transformer = LongCatImageTransformer2DModel.from_pretrained(
edit_model_id,
subfolder='transformer',
torch_dtype=torch.bfloat16,
use_safetensors=True
).to(device)
edit_pipe = LongCatImageEditPipeline.from_pretrained(
edit_model_id,
transformer=edit_transformer,
text_processor=edit_text_processor,
)
edit_pipe.to(device, torch.bfloat16)
print(f"✅ Image Edit model loaded successfully on {device}")
# --- Core Functions (Kept for completeness) ---
@spaces.GPU(duration=120)
def generate_image(
prompt: str,
width: int,
height: int,
seed: int,
progress=gr.Progress()
):
"""Generate image from text prompt"""
if not prompt or prompt.strip() == "":
raise gr.Error("Please enter a prompt")
try:
progress(0.1, desc="Preparing generation...")
progress(0.2, desc="Generating image...")
generator = torch.Generator("cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
with torch.inference_mode():
output = t2i_pipe(
prompt,
negative_prompt="",
height=height,
width=width,
guidance_scale=4.5,
num_inference_steps=50,
num_images_per_prompt=1,
generator=generator,
enable_cfg_renorm=True,
enable_prompt_rewrite=True
)
progress(1.0, desc="Done!")
return output.images[0]
except Exception as e:
raise gr.Error(f"Error during image generation: {str(e)}")
@spaces.GPU(duration=120)
def edit_image(
input_image: Image.Image,
prompt: str,
seed: int,
progress=gr.Progress()
):
"""Edit image based on text prompt"""
if input_image is None:
raise gr.Error("Please upload an image first")
if not prompt or prompt.strip() == "":
raise gr.Error("Please enter an edit instruction")
try:
progress(0.1, desc="Preparing image...")
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
progress(0.2, desc="Generating edited image...")
generator = torch.Generator("cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
with torch.inference_mode():
output = edit_pipe(
input_image,
prompt,
negative_prompt="",
guidance_scale=4.5,
num_inference_steps=50,
num_images_per_prompt=1,
generator=generator
)
progress(1.0, desc="Done!")
return output.images[0]
except Exception as e:
raise gr.Error(f"Error during image editing: {str(e)}")
# --- Examples (Kept for completeness) ---
edit_example_image_url = "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png"
edit_example_data = [
[edit_example_image_url, "Add a mustache", 42],
]
t2i_example_prompts = [
["一个年轻的亚裔女性,身穿黄色针织衫,搭配白色项链。她的双手放在膝盖上,表情恬静。背景是一堵粗糙的砖墙,午后的阳光温暖地洒在她身上,营造出一种宁静而温馨的氛围。", 1344, 768, 43],
["A serene mountain landscape at sunset with golden clouds", 1344, 768, 42],
["A cute robot sitting at a desk, digital art style", 1024, 1024, 44],
]
# Build Gradio interface
# Passed theme=apple_theme and fill_width=True
with gr.Blocks(theme=apple_theme, fill_width=True) as demo:
# Retaining the HTML header for branding/title
gr.HTML("""
<div style="text-align: center; padding: 40px 20px 30px 20px;">
<h1 style="font-size: 48px; font-weight: 700; margin: 0; color: var(--primary-500);">
LongCat Studio
</h1>
<p style="font-size: 20px; color: var(--body-text-color-subdued); margin-top: 12px; font-weight: 400;">
AI-powered image generation and editing
</p>
</div>
""")
with gr.Tabs(selected=0):
# Image Edit Tab (Responsive Layout: Row on Desktop, Column on Mobile)
with gr.TabItem("Edit Image", id=0):
with gr.Row():
# Left Column (Inputs)
with gr.Column(scale=1, min_width=0, variant="panel"):
gr.Markdown("### 🖼️ Input Image & Controls")
input_image = gr.Image(
label="Upload Image",
type="pil",
sources=["upload", "clipboard"],
height=450,
)
prompt = gr.Textbox(
label="What would you like to change?",
placeholder="e.g., Add a mustache, Change to sunset, Make it vintage...",
lines=2,
info="Describe the edit you want to make to the uploaded image.",
max_lines=3
)
seed = gr.Slider(
minimum=0,
maximum=999999,
value=42,
step=1,
label="Seed",
visible=True # Make visible for control
)
edit_btn = gr.Button("Edit Image", variant="primary", size="lg")
# Right Column (Output)
with gr.Column(scale=1, min_width=0, variant="panel"):
gr.Markdown("### ✨ Result")
output_image = gr.Image(
label="Result",
type="pil",
height=450,
)
gr.HTML("<div style='margin: 30px 0 20px 0;'></div>")
gr.Examples(
examples=edit_example_data,
inputs=[input_image, prompt, seed],
outputs=output_image,
fn=edit_image,
cache_examples=False,
label="Try an example",
examples_per_page=3
)
# Text-to-Image Tab (Responsive Layout: Row on Desktop, Column on Mobile)
with gr.TabItem("Generate Image", id=1):
with gr.Row():
# Left Column (Inputs)
with gr.Column(scale=1, min_width=0, variant="panel"):
gr.Markdown("### 🎨 Generation Controls")
t2i_prompt = gr.Textbox(
label="Describe your image",
placeholder="e.g., A serene mountain landscape at sunset...",
lines=4,
max_lines=6
)
t2i_width = gr.Slider(
minimum=512,
maximum=2048,
value=1344,
step=64,
label="Width",
)
t2i_height = gr.Slider(
minimum=512,
maximum=2048,
value=768,
step=64,
label="Height",
)
t2i_seed = gr.Slider(
minimum=0,
maximum=999999,
value=42,
step=1,
label="Seed",
visible=True # Make visible for control
)
generate_btn = gr.Button("Generate Image", variant="primary", size="lg")
# Right Column (Output)
with gr.Column(scale=1, min_width=0, variant="panel"):
gr.Markdown("### ✨ Result")
t2i_output = gr.Image(
label="Result",
type="pil",
height=550,
)
gr.HTML("<div style='margin: 30px 0 20px 0;'></div>")
gr.Examples(
examples=t2i_example_prompts,
inputs=[t2i_prompt, t2i_width, t2i_height, t2i_seed],
outputs=t2i_output,
fn=generate_image,
cache_examples=False,
label="Try an example",
examples_per_page=3
)
# Event handlers
generate_btn.click(
fn=generate_image,
inputs=[t2i_prompt, t2i_width, t2i_height, t2i_seed],
outputs=t2i_output,
)
edit_btn.click(
fn=edit_image,
inputs=[input_image, prompt, seed],
outputs=output_image,
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 60px; padding: 30px 20px; border-top: 1px solid var(--border-color-subdued);">
<p style="color: var(--body-text-color-subdued); font-size: var(--text-sm); margin: 0;">
Powered by LongCat • Built with
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: var(--primary-500); text-decoration: none;">anycoder</a>
</p>
</div>
""")
# Launch the app with the custom programmatic theme
if __name__ == "__main__":
demo.launch(
mcp_server=True,
theme=apple_theme,
)