File size: 7,542 Bytes
e673944
2473931
 
 
 
 
 
1a91398
 
2473931
1a91398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473931
1a91398
 
2473931
1a91398
 
 
 
 
2473931
bfc1d04
2473931
 
 
 
 
 
 
 
 
 
 
 
 
1a91398
 
 
 
 
 
 
2473931
 
 
1a91398
 
 
2473931
4e2a429
2473931
4e2a429
 
2473931
 
 
 
4e2a429
 
 
 
 
2473931
 
 
 
 
 
 
 
 
 
 
32fd425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473931
32fd425
 
2473931
4e2a429
2473931
4e2a429
 
32fd425
2473931
32fd425
4e2a429
 
2473931
 
32fd425
4e2a429
 
 
2473931
4e2a429
2473931
 
32fd425
4e2a429
 
32fd425
2473931
 
 
4e2a429
 
 
2473931
 
 
4e2a429
2473931
4e2a429
2473931
 
32fd425
2473931
4e2a429
 
 
32fd425
4e2a429
 
 
32fd425
4e2a429
 
 
2473931
32fd425
4e2a429
2473931
 
32fd425
4e2a429
2473931
 
 
 
88b3c72
2473931
4e2a429
32fd425
 
 
2473931
 
32fd425
 
 
 
 
 
 
 
4e2a429
 
32fd425
 
4e2a429
 
2473931
32fd425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473931
 
 
4e2a429
2473931
 
 
 
4e2a429
2473931
 
4e2a429
2473931
 
 
4e2a429
2473931
 
 
4e2a429
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import spaces
import gradio as gr
import torch
from diffusers import ZImagePipeline
import os
from pathlib import Path

# Global variable to store the pipeline
pipe = None

def load_model():
    """
    Load the Z-Image Turbo model before inference.
    This ensures the model is downloaded and ready before any generation requests.
    """
    global pipe
    
    if pipe is not None:
        return pipe
    
    print("Loading Z-Image Turbo model...")
    print("This may take a few minutes on first run while the model downloads...")
    
    try:
        # Load the pipeline with optimal settings
        pipe = ZImagePipeline.from_pretrained(
            "Tongyi-MAI/Z-Image-Turbo",
            torch_dtype=torch.bfloat16,
            low_cpu_mem_usage=False,
        )
        
        # Move to GPU if available
        device = "cuda" if torch.cuda.is_available() else "cpu"
        pipe.to(device)
        print(f"Model loaded on {device}")
        
        # Optional: Enable Flash Attention for better efficiency
        try:
            pipe.transformer.set_attention_backend("flash")
            print("Flash Attention enabled")
        except Exception as e:
            print(f"Flash Attention not available: {e}")
            print("Using default attention backend")
        
        print("Model loaded successfully!")
        return pipe
        
    except Exception as e:
        print(f"Error loading model: {e}")
        raise

# Pre-load the model when the app starts
print("Initializing model on startup...")
try:
    load_model()
    print("Model initialization complete!")
except Exception as e:
    print(f"Warning: Could not pre-load model: {e}")
    print("Model will be loaded on first generation request")

@spaces.GPU()
def generate_image(
    prompt,
    progress=gr.Progress(track_tqdm=True)
):
    """
    Generate an image using Z-Image Turbo model.
    
    Args:
        prompt: Text description of the desired image
    
    Returns:
        Generated PIL Image
    """
    global pipe
    
    # Ensure model is loaded
    if pipe is None:
        progress(0, desc="Loading model...")
        load_model()
    
    if not prompt.strip():
        raise gr.Error("Please enter a prompt to generate an image.")
    
    # Determine device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    # Set random seed for reproducibility
    generator = torch.Generator(device).manual_seed(42)
    
    # Generate the image with optimal settings
    progress(0.1, desc="Generating image...")
    
    try:
        result = pipe(
            prompt=prompt,
            negative_prompt=None,
            height=1024,
            width=1024,
            num_inference_steps=9,
            guidance_scale=0.0,
            generator=generator,
        )
        
        image = result.images[0]
        progress(1.0, desc="Complete!")
        
        return image
    
    except Exception as e:
        raise gr.Error(f"Generation failed: {str(e)}")

# Create a custom theme based on Soft theme with Apple-inspired colors
custom_theme = gr.themes.Soft(
    primary_hue=gr.themes.colors.blue,
    secondary_hue=gr.themes.colors.slate,
    neutral_hue=gr.themes.colors.gray,
    spacing_size=gr.themes.sizes.spacing_lg,
    radius_size=gr.themes.sizes.radius_md,
    text_size=gr.themes.sizes.text_lg,
    font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
    font_mono=[gr.themes.GoogleFont("IBM Plex Mono"), "ui-monospace", "Consolas", "monospace"],
).set(
    # Button styling
    button_primary_background_fill="#0071e3",
    button_primary_background_fill_hover="#0077ed",
    button_primary_text_color="white",
    button_large_padding="16px 40px",
    button_large_radius="12px",
    button_shadow="0 2px 8px rgba(0, 113, 227, 0.2)",
    button_shadow_hover="0 4px 12px rgba(0, 113, 227, 0.3)",
    
    # Input styling
    input_background_fill="#fbfbfd",
    input_background_fill_focus="white",
    input_border_color="#d2d2d7",
    input_border_color_focus="#0071e3",
    input_radius="12px",
    input_padding="16px",
    input_shadow_focus="0 0 0 4px rgba(0, 113, 227, 0.1)",
    
    # Container styling
    block_background_fill="white",
    block_border_width="1px",
    block_border_color="#e5e5e7",
    block_radius="12px",
    block_padding="24px",
    
    # Body styling
    body_background_fill="#f5f5f7",
    body_text_color="#1d1d1f",
    
    # Link styling
    link_text_color="#0071e3",
    link_text_color_hover="#0077ed",
)

# Minimal additional CSS for layout refinements
minimal_css = """
.gradio-container {
    max-width: 900px !important;
    margin: 0 auto !important;
}

.main-header {
    text-align: center;
    margin-bottom: 2rem;
    padding-bottom: 2rem;
    border-bottom: 1px solid #e5e5e7;
}

.main-header h1 {
    font-size: 3rem !important;
    font-weight: 600 !important;
    color: #1d1d1f !important;
    margin: 0 0 0.5rem 0 !important;
    letter-spacing: -1px;
}

.main-header .subtitle {
    font-size: 1.25rem !important;
    color: #86868b !important;
    margin: 0.5rem 0 !important;
}

.attribution {
    margin-top: 1rem;
    font-size: 0.875rem;
    color: #86868b;
}

.attribution a {
    color: #0071e3 !important;
    text-decoration: none;
    font-weight: 500;
}

.footer-info {
    text-align: center;
    padding: 2rem 1rem;
    color: #86868b;
    font-size: 0.875rem;
    margin-top: 2rem;
    border-top: 1px solid #e5e5e7;
}

.footer-info p {
    margin: 0.25rem 0;
}

@media (max-width: 768px) {
    .main-header h1 {
        font-size: 2rem !important;
    }
    
    .main-header .subtitle {
        font-size: 1rem !important;
    }
}
"""

# Create the Gradio interface
with gr.Blocks(
    title="Z-Image Turbo",
    theme=custom_theme,
    css=minimal_css,
    fill_height=False
) as demo:
    
    # Header
    with gr.Column(elem_classes="main-header"):
        gr.Markdown(
            """
            # Z-Image Turbo
            ### Create stunning images from text
            """,
            elem_classes="main-header"
        )
        gr.HTML("""
            <div class="attribution">
                Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">anycoder</a>
            </div>
        """)
    
    # Prompt input
    prompt = gr.Textbox(
        placeholder="Describe the image you want to create...",
        lines=3,
        max_lines=6,
        label="Prompt",
        show_label=False,
        container=True
    )
    
    # Generate button
    generate_btn = gr.Button(
        "Generate",
        variant="primary",
        size="lg",
        scale=1
    )
    
    # Output image
    output_image = gr.Image(
        type="pil",
        label="Generated Image",
        show_label=False,
        show_download_button=True,
        show_share_button=False,
        container=True
    )
    
    # Footer
    gr.HTML("""
        <div class="footer-info">
            <p>Powered by Z-Image Turbo from Tongyi-MAI</p>
            <p>Optimized for fast, high-quality image generation</p>
        </div>
    """)
    
    # Event handlers
    generate_btn.click(
        fn=generate_image,
        inputs=prompt,
        outputs=output_image,
        api_name="generate"
    )
    
    # Also allow generation on Enter key
    prompt.submit(
        fn=generate_image,
        inputs=prompt,
        outputs=output_image
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(
        share=False,
        show_error=True
    )