Spaces:
Paused
Paused
| import base64 | |
| import datetime | |
| import gradio as gr | |
| import numpy as np | |
| import os | |
| import pytz | |
| import psutil | |
| import re | |
| import random | |
| import torch | |
| import time | |
| import shutil # Added for zip functionality | |
| import zipfile | |
| from PIL import Image | |
| from io import BytesIO | |
| from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny | |
| try: | |
| import intel_extension_for_pytorch as ipex | |
| except: | |
| pass | |
| SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
| TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| # check if MPS is available OSX only M1/M2/M3 chips | |
| mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
| xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() | |
| device = torch.device( | |
| "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" | |
| ) | |
| torch_device = device | |
| torch_dtype = torch.float16 | |
| # Function to encode a file to base64 | |
| def encode_file_to_base64(file_path): | |
| with open(file_path, "rb") as file: | |
| encoded = base64.b64encode(file.read()).decode() | |
| return encoded | |
| def create_zip_of_files(files): | |
| """ | |
| Create a zip file from a list of files. | |
| """ | |
| zip_name = "all_files.zip" | |
| with zipfile.ZipFile(zip_name, 'w') as zipf: | |
| for file in files: | |
| zipf.write(file) | |
| return zip_name | |
| def get_zip_download_link(zip_file): | |
| """ | |
| Generate a link to download the zip file. | |
| """ | |
| with open(zip_file, 'rb') as f: | |
| data = f.read() | |
| b64 = base64.b64encode(data).decode() | |
| href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' | |
| return href | |
| # Function to clear all image files | |
| def clear_all_images(): | |
| base_dir = os.getcwd() # Get the current base directory | |
| img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg" | |
| # Remove all image files | |
| for file in img_files: | |
| os.remove(file) | |
| print('removed:' + file) | |
| # add file save and download and clear: | |
| # Function to create a zip file from a list of files | |
| def create_zip(files): | |
| timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
| zip_filename = f"images_{timestamp}.zip" | |
| print('Creating file ' + zip_filename) | |
| with zipfile.ZipFile(zip_filename, 'w') as zipf: | |
| for file in files: | |
| zipf.write(file, os.path.basename(file)) | |
| print('added:' + file) | |
| return zip_filename | |
| def get_zip_download_link(zip_file): | |
| """ | |
| Generate a link to download the zip file. | |
| """ | |
| zip_base64 = encode_file_to_base64(zip_file) # Encode the zip file to base64 | |
| href = f'<a href="data:application/zip;base64,{zip_base64}" download="{zip_file}">Download All</a>' | |
| return href | |
| def save_all_images(images): | |
| if len(images) == 0: | |
| return None, None | |
| zip_filename = create_zip_of_files(images) # Create a zip file from the list of image files | |
| print(f"Zip file created: {zip_filename}") | |
| download_link = get_zip_download_link(zip_filename) | |
| return zip_filename, download_link | |
| def save_all_button_click(): | |
| images = [file for file in os.listdir() if file.lower().endswith((".png", ".jpg", ".jpeg"))] | |
| zip_filename, download_link = save_all_images(images) | |
| if download_link: | |
| gr.HTML(download_link) | |
| # Function to handle "Clear All" button click | |
| def clear_all_button_click(): | |
| clear_all_images() | |
| print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") | |
| print(f"TORCH_COMPILE: {TORCH_COMPILE}") | |
| print(f"device: {device}") | |
| if mps_available: | |
| device = torch.device("mps") | |
| torch_device = "cpu" | |
| torch_dtype = torch.float32 | |
| if SAFETY_CHECKER == "True": | |
| pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7") | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.to(device=torch_device, dtype=torch_dtype).to(device) | |
| pipe.unet.to(memory_format=torch.channels_last) | |
| pipe.set_progress_bar_config(disable=True) | |
| # check if computer has less than 64GB of RAM using sys or os | |
| if psutil.virtual_memory().total < 64 * 1024**3: | |
| pipe.enable_attention_slicing() | |
| if TORCH_COMPILE: | |
| pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) | |
| pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) | |
| # Load LCM LoRA | |
| pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") | |
| pipe.fuse_lora() | |
| def safe_filename(text): | |
| """Generate a safe filename from a string.""" | |
| safe_text = re.sub(r'\W+', '_', text) | |
| timestamp = datetime.datetime.now().strftime("%Y%m%d") | |
| return f"{safe_text}_{timestamp}.png" | |
| def encode_image(image): | |
| """Encode image to base64.""" | |
| buffered = BytesIO() | |
| #image.save(buffered, format="PNG") | |
| return base64.b64encode(buffered.getvalue()).decode() | |
| def fake_gan(): | |
| base_dir = os.getcwd() # Get the current base directory | |
| img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg" | |
| images = [(random.choice(img_files), os.path.splitext(file)[0]) for file in img_files] | |
| return images | |
| def predict(prompt, guidance, steps, seed=1231231): | |
| generator = torch.manual_seed(seed) | |
| last_time = time.time() | |
| results = pipe( | |
| prompt=prompt, | |
| generator=generator, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance, | |
| width=512, | |
| height=512, | |
| # original_inference_steps=params.lcm_steps, | |
| output_type="pil", | |
| ) | |
| print(f"Pipe took {time.time() - last_time} seconds") | |
| nsfw_content_detected = ( | |
| results.nsfw_content_detected[0] | |
| if "nsfw_content_detected" in results | |
| else False | |
| ) | |
| if nsfw_content_detected: | |
| nsfw=gr.Button("🕹️NSFW🎨", scale=1) | |
| try: | |
| central = pytz.timezone('US/Central') | |
| safe_date_time = datetime.datetime.now().strftime("%Y%m%d") | |
| replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
| safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] | |
| filename = f"{safe_date_time}_{safe_prompt}.png" | |
| # Save the image | |
| if len(results.images) > 0: | |
| image_path = os.path.join("", filename) # Specify your directory | |
| results.images[0].save(image_path) | |
| print(f"#Image saved as {image_path}") | |
| gr.File(image_path) | |
| gr.Button(link=image_path) | |
| # encoded_image = encode_image(image) | |
| # html_link = f'<a href="data:image/png;base64,{encoded_image}" download="{filename}">Download Image</a>' | |
| # gr.HTML(html_link) | |
| except: | |
| return results.images[0] | |
| return results.images[0] if len(results.images) > 0 else None | |
| css = """ | |
| #container{ | |
| margin: 0 auto; | |
| max-width: 40rem; | |
| } | |
| #intro{ | |
| max-width: 100%; | |
| text-align: center; | |
| margin: 0 auto; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="container"): | |
| gr.Markdown( | |
| """4📝RT🖼️Images - 🕹️ Real Time 🎨 Image Generator Gallery 🌐""", | |
| elem_id="intro", | |
| ) | |
| with gr.Row(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| placeholder="Insert your prompt here:", scale=5, container=False | |
| ) | |
| generate_bt = gr.Button("Generate", scale=1) | |
| gr.Button("Download", link="/file=all_files.zip") | |
| # Image Result from last prompt | |
| image = gr.Image(type="filepath") | |
| # Gallery of Generated Images with Image Names in Random Set to Download | |
| with gr.Row(variant="compact"): | |
| text = gr.Textbox( | |
| label="Image Sets", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| ) | |
| btn = gr.Button("Generate Gallery of Saved Images") | |
| gallery = gr.Gallery( | |
| label="Generated Images", show_label=True, elem_id="gallery" | |
| ) | |
| with gr.Row(variant="compact"): | |
| # Add "Save All" button with emoji | |
| save_all_button = gr.Button("💾 Save All", scale=1) | |
| # Add "Clear All" button with emoji | |
| clear_all_button = gr.Button("🗑️ Clear All", scale=1) | |
| # Advanced Generate Options | |
| with gr.Accordion("Advanced options", open=False): | |
| guidance = gr.Slider( | |
| label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001 | |
| ) | |
| steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1) | |
| seed = gr.Slider( | |
| randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 | |
| ) | |
| # Diffusers | |
| with gr.Accordion("Run with diffusers"): | |
| gr.Markdown( | |
| """## Running LCM-LoRAs it with `diffusers` | |
| ```bash | |
| pip install diffusers==0.23.0 | |
| ``` | |
| ```py | |
| from diffusers import DiffusionPipeline, LCMScheduler | |
| pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda") | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA | |
| results = pipe( | |
| prompt="ImageEditor", | |
| num_inference_steps=4, | |
| guidance_scale=0.0, | |
| ) | |
| results.images[0] | |
| ``` | |
| """ | |
| ) | |
| # Function IO Eventing and Controls | |
| inputs = [prompt, guidance, steps, seed] | |
| generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| btn.click(fake_gan, None, gallery) | |
| prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| # Attach click event handlers to the buttons | |
| save_all_button.click(save_all_button_click) | |
| with gr.Column(): | |
| file_obj = gr.File(label="Input File") | |
| input= file_obj | |
| clear_all_button.click(clear_all_button_click) | |
| demo.queue() | |
| demo.launch(allowed_paths=["/"]) | |