Spaces:
Paused
Paused
Commit
·
8f40af2
1
Parent(s):
8205b3e
Update app.py
Browse files
app.py
CHANGED
|
@@ -64,16 +64,6 @@ pipe.load_lora_weights(
|
|
| 64 |
use_auth_token=HF_TOKEN,
|
| 65 |
)
|
| 66 |
|
| 67 |
-
## Load papercut LoRA
|
| 68 |
-
#pipe.load_lora_weights(
|
| 69 |
-
# "TheLastBen/Papercut_SDXL",
|
| 70 |
-
# weight_name="papercut.safetensors",
|
| 71 |
-
# adapter_name="papercut",
|
| 72 |
-
#)
|
| 73 |
-
|
| 74 |
-
# Mix the LoRAs
|
| 75 |
-
#pipe.set_adapters(["lcm", "papercut"], adapter_weights=[1.0, 0.8])
|
| 76 |
-
|
| 77 |
compel_proc = Compel(
|
| 78 |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
| 79 |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
|
@@ -123,7 +113,7 @@ css = """
|
|
| 123 |
with gr.Blocks(css=css) as demo:
|
| 124 |
with gr.Column(elem_id="container"):
|
| 125 |
gr.Markdown(
|
| 126 |
-
"""#
|
| 127 |
SDXL is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#).
|
| 128 |
""",
|
| 129 |
elem_id="intro",
|
|
@@ -145,12 +135,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 145 |
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
|
| 146 |
)
|
| 147 |
with gr.Group():
|
| 148 |
-
gr.Markdown('''##
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
```py
|
| 150 |
from diffusers import DiffusionPipeline, LCMScheduler
|
| 151 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
|
| 152 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 153 |
-
pipe.load_lora_weights("lcm-sd/lcm-sdxl-lora")
|
| 154 |
|
| 155 |
results = pipe(
|
| 156 |
prompt="The spirit of a tamagotchi wandering in the city of Vienna",
|
|
|
|
| 64 |
use_auth_token=HF_TOKEN,
|
| 65 |
)
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
compel_proc = Compel(
|
| 68 |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
| 69 |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
|
|
|
| 113 |
with gr.Blocks(css=css) as demo:
|
| 114 |
with gr.Column(elem_id="container"):
|
| 115 |
gr.Markdown(
|
| 116 |
+
"""# SDXL in 4 steps with Latent Consistency LoRAs
|
| 117 |
SDXL is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#).
|
| 118 |
""",
|
| 119 |
elem_id="intro",
|
|
|
|
| 135 |
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
|
| 136 |
)
|
| 137 |
with gr.Group():
|
| 138 |
+
gr.Markdown('''## Running LCM-LoRAs it with `diffusers`
|
| 139 |
+
```bash
|
| 140 |
+
pip install diffusers==0.23.0
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
```py
|
| 144 |
from diffusers import DiffusionPipeline, LCMScheduler
|
| 145 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
|
| 146 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 147 |
+
pipe.load_lora_weights("lcm-sd/lcm-sdxl-lora") #yes, it is a real LoRA that gives superpowers to SDXL!
|
| 148 |
|
| 149 |
results = pipe(
|
| 150 |
prompt="The spirit of a tamagotchi wandering in the city of Vienna",
|