Spaces:
Runtime error
Runtime error
Commit
·
7084f70
1
Parent(s):
c948f23
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
@author:XuMing([email protected])
|
| 4 |
+
@description:
|
| 5 |
+
"""
|
| 6 |
+
import base64
|
| 7 |
+
import glob
|
| 8 |
+
import json
|
| 9 |
+
import os
|
| 10 |
+
import pprint
|
| 11 |
+
import sys
|
| 12 |
+
import zipfile
|
| 13 |
+
from io import BytesIO
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
|
| 16 |
+
import faiss
|
| 17 |
import gradio as gr
|
| 18 |
+
import numpy as np
|
| 19 |
+
import pandas as pd
|
| 20 |
+
import requests
|
| 21 |
+
from PIL import Image
|
| 22 |
+
from loguru import logger
|
| 23 |
+
from tqdm import tqdm
|
| 24 |
+
|
| 25 |
+
sys.path.append('..')
|
| 26 |
+
from similarities.utils.get_file import http_get
|
| 27 |
+
from similarities.clip_module import ClipModule
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def batch_search_index(
|
| 31 |
+
queries,
|
| 32 |
+
model,
|
| 33 |
+
faiss_index,
|
| 34 |
+
df,
|
| 35 |
+
num_results,
|
| 36 |
+
threshold,
|
| 37 |
+
debug=False,
|
| 38 |
+
):
|
| 39 |
+
"""
|
| 40 |
+
Search index with image inputs or image paths (batch search)
|
| 41 |
+
:param queries: list of image paths or list of image inputs or texts or embeddings
|
| 42 |
+
:param model: CLIP model
|
| 43 |
+
:param faiss_index: faiss index
|
| 44 |
+
:param df: corpus dataframe
|
| 45 |
+
:param num_results: int, number of results to return
|
| 46 |
+
:param threshold: float, threshold to return results
|
| 47 |
+
:param debug: bool, whether to print debug info, default True
|
| 48 |
+
:return: search results
|
| 49 |
+
"""
|
| 50 |
+
assert queries is not None, "queries should not be None"
|
| 51 |
+
result = []
|
| 52 |
+
if isinstance(queries, np.ndarray):
|
| 53 |
+
query_features = queries
|
| 54 |
+
else:
|
| 55 |
+
query_features = model.encode(queries, normalize_embeddings=True)
|
| 56 |
+
|
| 57 |
+
for query, query_feature in zip(queries, query_features):
|
| 58 |
+
query_feature = query_feature.reshape(1, -1)
|
| 59 |
+
if threshold is not None:
|
| 60 |
+
_, d, i = faiss_index.range_search(query_feature, threshold)
|
| 61 |
+
if debug:
|
| 62 |
+
logger.debug(f"Found {i.shape} items with query '{query}' and threshold {threshold}")
|
| 63 |
+
else:
|
| 64 |
+
d, i = faiss_index.search(query_feature, num_results)
|
| 65 |
+
i = i[0]
|
| 66 |
+
d = d[0]
|
| 67 |
+
# Sorted faiss search result with distance
|
| 68 |
+
text_scores = []
|
| 69 |
+
for ed, ei in zip(d, i):
|
| 70 |
+
# Convert to json, avoid float values error
|
| 71 |
+
item = df.iloc[ei].to_json(force_ascii=False)
|
| 72 |
+
if debug:
|
| 73 |
+
logger.debug(f"Found: {item}, similarity: {ed}, id: {ei}")
|
| 74 |
+
text_scores.append((item, float(ed), int(ei)))
|
| 75 |
+
# Sort by score desc
|
| 76 |
+
query_result = sorted(text_scores, key=lambda x: x[1], reverse=True)
|
| 77 |
+
result.append(query_result)
|
| 78 |
+
return result
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def preprocess_image(image_input) -> Image.Image:
|
| 82 |
+
"""
|
| 83 |
+
Process image input to Image.Image object
|
| 84 |
+
"""
|
| 85 |
+
if isinstance(image_input, str):
|
| 86 |
+
if image_input.startswith('http'):
|
| 87 |
+
return Image.open(requests.get(image_input, stream=True).raw)
|
| 88 |
+
elif image_input.endswith((".png", ".jpg", ".jpeg", ".bmp")) and os.path.isfile(image_input):
|
| 89 |
+
return Image.open(image_input)
|
| 90 |
+
else:
|
| 91 |
+
raise ValueError(f"Unsupported image input type, image path: {image_input}")
|
| 92 |
+
elif isinstance(image_input, np.ndarray):
|
| 93 |
+
return Image.fromarray(image_input)
|
| 94 |
+
elif isinstance(image_input, bytes):
|
| 95 |
+
img_data = base64.b64decode(image_input)
|
| 96 |
+
return Image.open(BytesIO(img_data))
|
| 97 |
+
else:
|
| 98 |
+
raise ValueError(f"Unsupported image input type, image input: {image_input}")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def main():
|
| 102 |
+
# we get about 25k images from Unsplash
|
| 103 |
+
img_folder = 'photos/'
|
| 104 |
+
clip_folder = 'photos/csv/'
|
| 105 |
+
if not os.path.exists(clip_folder) or len(os.listdir(clip_folder)) == 0:
|
| 106 |
+
os.makedirs(img_folder, exist_ok=True)
|
| 107 |
+
|
| 108 |
+
photo_filename = 'unsplash-25k-photos.zip'
|
| 109 |
+
if not os.path.exists(photo_filename): # Download dataset if not exist
|
| 110 |
+
http_get('http://sbert.net/datasets/' + photo_filename, photo_filename)
|
| 111 |
+
|
| 112 |
+
# Extract all images
|
| 113 |
+
with zipfile.ZipFile(photo_filename, 'r') as zf:
|
| 114 |
+
for member in tqdm(zf.infolist(), desc='Extracting'):
|
| 115 |
+
zf.extract(member, img_folder)
|
| 116 |
+
df = pd.DataFrame({'image_path': glob.glob(img_folder + '/*'),
|
| 117 |
+
'image_name': [os.path.basename(x) for x in glob.glob(img_folder + '/*')]})
|
| 118 |
+
os.makedirs(clip_folder, exist_ok=True)
|
| 119 |
+
df.to_csv(f'{clip_folder}/unsplash-25k-photos.csv', index=False)
|
| 120 |
+
|
| 121 |
+
index_dir = 'clip_engine_25k/image_index/'
|
| 122 |
+
index_name = "faiss.index"
|
| 123 |
+
corpus_dir = 'clip_engine_25k/corpus/'
|
| 124 |
+
model_name = "OFA-Sys/chinese-clip-vit-base-patch16"
|
| 125 |
+
|
| 126 |
+
logger.info("starting boot of clip server")
|
| 127 |
+
index_file = os.path.join(index_dir, index_name)
|
| 128 |
+
assert os.path.exists(index_file), f"index file {index_file} not exist"
|
| 129 |
+
faiss_index = faiss.read_index(index_file)
|
| 130 |
+
model = ClipModule(model_name_or_path=model_name)
|
| 131 |
+
df = pd.concat(pd.read_parquet(parquet_file) for parquet_file in sorted(Path(corpus_dir).glob("*.parquet")))
|
| 132 |
+
logger.info(f'Load model success. model: {model_name}, index: {faiss_index}, corpus size: {len(df)}')
|
| 133 |
+
|
| 134 |
+
def image_path_to_base64(image_path: str) -> str:
|
| 135 |
+
with open(image_path, "rb") as image_file:
|
| 136 |
+
img_str = base64.b64encode(image_file.read()).decode("utf-8")
|
| 137 |
+
return img_str
|
| 138 |
+
|
| 139 |
+
def search_image(text="", image=None):
|
| 140 |
+
html_output = ""
|
| 141 |
+
|
| 142 |
+
if not text and not image:
|
| 143 |
+
return "<p>Please provide either text or image input.</p>"
|
| 144 |
+
|
| 145 |
+
if text and image is not None:
|
| 146 |
+
return "<p>Please provide either text or image input, not both.</p>"
|
| 147 |
+
|
| 148 |
+
if image is not None:
|
| 149 |
+
q = [preprocess_image(image)]
|
| 150 |
+
results = batch_search_index(q, model, faiss_index, df, 5, None, debug=False)[0]
|
| 151 |
+
image_src = "data:image/jpeg;base64," + image_path_to_base64(image)
|
| 152 |
+
html_output += f'Query: <img src="{image_src}" width="200" height="200"><br>'
|
| 153 |
+
else:
|
| 154 |
+
q = [text]
|
| 155 |
+
results = batch_search_index(q, model, faiss_index, df, 5, None, debug=False)[0]
|
| 156 |
+
html_output += f'Query: {text}<br>'
|
| 157 |
+
|
| 158 |
+
html_output += f'Result Size: {len(results)}<br>'
|
| 159 |
+
for result in results:
|
| 160 |
+
item, similarity_score, _ = result
|
| 161 |
+
item_dict = json.loads(item)
|
| 162 |
+
image_path = item_dict.get("image_path", "")
|
| 163 |
+
tip = pprint.pformat(item_dict)
|
| 164 |
+
if not image_path:
|
| 165 |
+
continue
|
| 166 |
+
if image_path.startswith("http"):
|
| 167 |
+
image_src = image_path
|
| 168 |
+
else:
|
| 169 |
+
image_src = "data:image/jpeg;base64," + image_path_to_base64(image_path)
|
| 170 |
+
html_output += f'<div style="display: inline-block; position: relative; margin: 10px;">'
|
| 171 |
+
html_output += f'<img src="{image_src}" width="200" height="200" title="{tip}">'
|
| 172 |
+
html_output += f'<div style="position: absolute; bottom: 0; right: 0; background-color: rgba(255, 255, 255, 0.7); padding: 2px 5px;">'
|
| 173 |
+
html_output += f'Score: {similarity_score:.4f}'
|
| 174 |
+
html_output += f'</div></div>'
|
| 175 |
+
|
| 176 |
+
return html_output
|
| 177 |
+
|
| 178 |
+
def reset_user_input():
|
| 179 |
+
return '', None
|
| 180 |
+
|
| 181 |
+
with gr.Blocks() as demo:
|
| 182 |
+
gr.HTML("""<h1 align="center">CLIP Image Search</h1>""")
|
| 183 |
+
gr.Markdown(
|
| 184 |
+
"> Search for similar images using Faiss and Chinese-CLIP. Link to Github: [similarities](https://github.com/shibing624/similarities)")
|
| 185 |
+
with gr.Tab("Text"):
|
| 186 |
+
with gr.Row():
|
| 187 |
+
with gr.Column():
|
| 188 |
+
input_text = gr.Textbox(lines=2, placeholder="Enter text here...")
|
| 189 |
+
|
| 190 |
+
with gr.Tab("Image"):
|
| 191 |
+
with gr.Row():
|
| 192 |
+
with gr.Column():
|
| 193 |
+
input_image = gr.Image(type="filepath", label="Upload an image")
|
| 194 |
+
|
| 195 |
+
btn_submit = gr.Button(label="Submit")
|
| 196 |
+
output = gr.outputs.HTML(label="Search results")
|
| 197 |
+
btn_submit.click(search_image, inputs=[input_text, input_image],
|
| 198 |
+
outputs=output, show_progress=True)
|
| 199 |
+
btn_submit.click(reset_user_input, outputs=[input_text, input_image])
|
| 200 |
+
|
| 201 |
+
demo.queue().launch()
|
| 202 |
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
if __name__ == '__main__':
|
| 205 |
+
main()
|