Spaces:
Runtime error
Runtime error
| import sys | |
| sys.path.insert(0,'stable_diffusion') | |
| from train_esd import train_esd | |
| import torch | |
| ckpt_path = "stable_diffusion/models/ldm/sd-v1-4-full-ema.ckpt" | |
| config_path = "stable_diffusion/configs/stable-diffusion/v1-inference.yaml" | |
| diffusers_config_path = "stable_diffusion/config.json" | |
| orig, newm = train_esd("England", | |
| 'xattn', | |
| 3, | |
| 1, | |
| 2, | |
| .003, | |
| config_path, | |
| ckpt_path, | |
| diffusers_config_path, | |
| ['cuda', 'cuda'], | |
| None | |
| ) | |
| from convertModels import convert_ldm_unet_checkpoint, create_unet_diffusers_config | |
| from diffusers import UNet2DConditionModel, AutoencoderKL, LMSDiscreteScheduler | |
| from omegaconf import OmegaConf | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| original_config = OmegaConf.load(config_path) | |
| original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = 4 | |
| unet_config = create_unet_diffusers_config(original_config, image_size=512) | |
| converted_unet_checkpoint = convert_ldm_unet_checkpoint(newm.state_dict(), unet_config) | |
| unet = UNet2DConditionModel(**unet_config) | |
| unet.load_state_dict(converted_unet_checkpoint) | |