Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| """ | |
| from typing import Any | |
| from typing import Callable | |
| from typing import ParamSpec | |
| import spaces | |
| import torch | |
| from spaces.zero.torch.aoti import ZeroGPUCompiledModel | |
| from spaces.zero.torch.aoti import ZeroGPUWeights | |
| from torch.utils._pytree import tree_map | |
| P = ParamSpec('P') | |
| TRANSFORMER_IMAGE_DIM = torch.export.Dim('image_seq_length', min=4096, max=16384) # min: 0 images, max: 3 (1024x1024) images | |
| TRANSFORMER_DYNAMIC_SHAPES = { | |
| 'double': { | |
| 'hidden_states': { | |
| 1: TRANSFORMER_IMAGE_DIM, | |
| }, | |
| 'image_rotary_emb': ( | |
| {0: TRANSFORMER_IMAGE_DIM + 512}, | |
| {0: TRANSFORMER_IMAGE_DIM + 512}, | |
| ), | |
| }, | |
| 'single': { | |
| 'hidden_states': { | |
| 1: TRANSFORMER_IMAGE_DIM + 512, | |
| }, | |
| 'image_rotary_emb': ( | |
| {0: TRANSFORMER_IMAGE_DIM + 512}, | |
| {0: TRANSFORMER_IMAGE_DIM + 512}, | |
| ), | |
| }, | |
| } | |
| INDUCTOR_CONFIGS = { | |
| 'conv_1x1_as_mm': True, | |
| 'epilogue_fusion': False, | |
| 'coordinate_descent_tuning': True, | |
| 'coordinate_descent_check_all_directions': True, | |
| 'max_autotune': True, | |
| 'triton.cudagraphs': True, | |
| } | |
| def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): | |
| blocks = { | |
| 'double': pipeline.transformer.transformer_blocks, | |
| 'single': pipeline.transformer.single_transformer_blocks, | |
| } | |
| def compile_block(blocks_kind: str): | |
| block = blocks[blocks_kind][0] | |
| with spaces.aoti_capture(block) as call: | |
| pipeline(*args, **kwargs) | |
| dynamic_shapes = tree_map(lambda t: None, call.kwargs) | |
| dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES[blocks_kind] | |
| with torch.no_grad(): | |
| exported = torch.export.export( | |
| mod=block, | |
| args=call.args, | |
| kwargs=call.kwargs, | |
| dynamic_shapes=dynamic_shapes, | |
| ) | |
| return spaces.aoti_compile(exported, INDUCTOR_CONFIGS).archive_file | |
| for blocks_kind in ('double', 'single'): | |
| archive_file = compile_block(blocks_kind) | |
| for block in blocks[blocks_kind]: | |
| weights = ZeroGPUWeights(block.state_dict()) | |
| block.forward = ZeroGPUCompiledModel(archive_file, weights) | |