Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +41 -20
src/streamlit_app.py
CHANGED
|
@@ -18,56 +18,64 @@ Upload a **CSV** file with columns `Peptide` and `HLA`,
|
|
| 18 |
or a **FASTA** file containing peptide sequences (headers optionally include HLA type).
|
| 19 |
""")
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
os.environ["HF_HOME"] = "/data/huggingface"
|
| 23 |
os.environ["TRANSFORMERS_CACHE"] = "/data/huggingface"
|
| 24 |
os.environ["TORCH_HOME"] = "/data/huggingface"
|
| 25 |
-
os.environ["ESM_CACHE_DIR"] =
|
| 26 |
-
os.makedirs("/data/phla_cache", exist_ok=True)
|
| 27 |
|
| 28 |
# ==============================
|
| 29 |
-
#
|
| 30 |
# ==============================
|
| 31 |
@st.cache_resource
|
| 32 |
-
def
|
| 33 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 34 |
|
| 35 |
-
# 尝试从本地加载,如果失败则从 HF Hub 下载
|
| 36 |
-
local_path = "/app/src/model.pt"
|
| 37 |
if not os.path.exists(local_path):
|
| 38 |
-
st.warning("Model not found locally. Downloading from Hugging Face
|
|
|
|
| 39 |
local_path = hf_hub_download(
|
| 40 |
-
repo_id="caokai1073/StriMap", #
|
| 41 |
-
filename="
|
|
|
|
| 42 |
)
|
| 43 |
|
| 44 |
model, device = load_model(local_path, device=device)
|
| 45 |
return model, device
|
| 46 |
|
| 47 |
-
model, device = get_model()
|
| 48 |
|
| 49 |
# ==============================
|
| 50 |
-
#
|
| 51 |
# ==============================
|
| 52 |
-
uploaded_file = st.file_uploader("Upload CSV or FASTA", type=["csv", "fasta"])
|
| 53 |
|
| 54 |
if uploaded_file:
|
| 55 |
-
|
| 56 |
-
temp_path = os.path.join(
|
| 57 |
with open(temp_path, "wb") as f:
|
| 58 |
f.write(uploaded_file.getbuffer())
|
| 59 |
|
| 60 |
# ==============================
|
| 61 |
# 文件解析
|
| 62 |
# ==============================
|
| 63 |
-
if
|
| 64 |
df = pd.read_csv(temp_path)
|
| 65 |
else:
|
| 66 |
seqs = []
|
| 67 |
for rec in SeqIO.parse(temp_path, "fasta"):
|
| 68 |
header = rec.id
|
| 69 |
seq = str(rec.seq)
|
| 70 |
-
# 尝试从header提取HLA,比如 ">HLA-A*02:01|SLLMWITQC"
|
| 71 |
if "|" in header:
|
| 72 |
hla, _ = header.split("|", 1)
|
| 73 |
else:
|
|
@@ -79,10 +87,13 @@ if uploaded_file:
|
|
| 79 |
st.dataframe(df.head())
|
| 80 |
|
| 81 |
# ==============================
|
| 82 |
-
#
|
| 83 |
# ==============================
|
| 84 |
if st.button("🚀 Run Prediction"):
|
| 85 |
-
with st.spinner("
|
|
|
|
|
|
|
|
|
|
| 86 |
result_df = predict_from_df(df, model)
|
| 87 |
|
| 88 |
st.success("✅ Prediction complete!")
|
|
@@ -97,4 +108,14 @@ if uploaded_file:
|
|
| 97 |
data=csv,
|
| 98 |
file_name="hla_binding_predictions.csv",
|
| 99 |
mime="text/csv",
|
| 100 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
or a **FASTA** file containing peptide sequences (headers optionally include HLA type).
|
| 19 |
""")
|
| 20 |
|
| 21 |
+
# ==============================
|
| 22 |
+
# 全局路径设置
|
| 23 |
+
# ==============================
|
| 24 |
+
CACHE_DIR = "/data/phla_cache"
|
| 25 |
+
MODEL_DIR = "/app/src"
|
| 26 |
+
UPLOAD_DIR = "/data/uploads"
|
| 27 |
+
|
| 28 |
+
for d in [CACHE_DIR, MODEL_DIR, UPLOAD_DIR]:
|
| 29 |
+
os.makedirs(d, exist_ok=True)
|
| 30 |
+
|
| 31 |
+
# 环境变量(确保所有模型和 ESM 缓存写入 /data)
|
| 32 |
os.environ["HF_HOME"] = "/data/huggingface"
|
| 33 |
os.environ["TRANSFORMERS_CACHE"] = "/data/huggingface"
|
| 34 |
os.environ["TORCH_HOME"] = "/data/huggingface"
|
| 35 |
+
os.environ["ESM_CACHE_DIR"] = CACHE_DIR
|
|
|
|
| 36 |
|
| 37 |
# ==============================
|
| 38 |
+
# 模型加载函数(延迟加载 + 缓存)
|
| 39 |
# ==============================
|
| 40 |
@st.cache_resource
|
| 41 |
+
def load_model_cached():
|
| 42 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 43 |
+
local_path = os.path.join(MODEL_DIR, "model.pt")
|
| 44 |
|
|
|
|
|
|
|
| 45 |
if not os.path.exists(local_path):
|
| 46 |
+
st.warning("🔄 Model not found locally. Downloading from Hugging Face model repo...")
|
| 47 |
+
# ⚠️ 使用 Model Repo,而不是 Space Repo
|
| 48 |
local_path = hf_hub_download(
|
| 49 |
+
repo_id="caokai1073/StriMap-model", # 建议单独创建模型仓库
|
| 50 |
+
filename="model.pt",
|
| 51 |
+
cache_dir=MODEL_DIR
|
| 52 |
)
|
| 53 |
|
| 54 |
model, device = load_model(local_path, device=device)
|
| 55 |
return model, device
|
| 56 |
|
|
|
|
| 57 |
|
| 58 |
# ==============================
|
| 59 |
+
# 上传文件(安全写入 /data/uploads)
|
| 60 |
# ==============================
|
| 61 |
+
uploaded_file = st.file_uploader("📤 Upload CSV or FASTA", type=["csv", "fasta"])
|
| 62 |
|
| 63 |
if uploaded_file:
|
| 64 |
+
safe_name = uploaded_file.name.replace(" ", "_")
|
| 65 |
+
temp_path = os.path.join(UPLOAD_DIR, safe_name)
|
| 66 |
with open(temp_path, "wb") as f:
|
| 67 |
f.write(uploaded_file.getbuffer())
|
| 68 |
|
| 69 |
# ==============================
|
| 70 |
# 文件解析
|
| 71 |
# ==============================
|
| 72 |
+
if safe_name.endswith(".csv"):
|
| 73 |
df = pd.read_csv(temp_path)
|
| 74 |
else:
|
| 75 |
seqs = []
|
| 76 |
for rec in SeqIO.parse(temp_path, "fasta"):
|
| 77 |
header = rec.id
|
| 78 |
seq = str(rec.seq)
|
|
|
|
| 79 |
if "|" in header:
|
| 80 |
hla, _ = header.split("|", 1)
|
| 81 |
else:
|
|
|
|
| 87 |
st.dataframe(df.head())
|
| 88 |
|
| 89 |
# ==============================
|
| 90 |
+
# 模型预测(延迟加载)
|
| 91 |
# ==============================
|
| 92 |
if st.button("🚀 Run Prediction"):
|
| 93 |
+
with st.spinner("🔄 Loading model (this may take ~1 min first time)..."):
|
| 94 |
+
model, device = load_model_cached()
|
| 95 |
+
|
| 96 |
+
with st.spinner("Running inference..."):
|
| 97 |
result_df = predict_from_df(df, model)
|
| 98 |
|
| 99 |
st.success("✅ Prediction complete!")
|
|
|
|
| 108 |
data=csv,
|
| 109 |
file_name="hla_binding_predictions.csv",
|
| 110 |
mime="text/csv",
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# ==============================
|
| 114 |
+
# Debug / data check (optional)
|
| 115 |
+
# ==============================
|
| 116 |
+
if st.sidebar.button("📁 List /data files"):
|
| 117 |
+
files = []
|
| 118 |
+
for root, _, filenames in os.walk("/data"):
|
| 119 |
+
for f in filenames:
|
| 120 |
+
files.append(os.path.join(root, f))
|
| 121 |
+
st.sidebar.write(files)
|