Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files
README.md
CHANGED
|
@@ -1,29 +1,29 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: CL EVA02 LoRA ONNX Tagger
|
| 3 |
-
emoji: 🖼️
|
| 4 |
-
colorFrom: blue
|
| 5 |
-
colorTo: green
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 4.43.0 # requirements.txt と合わせるか確認
|
| 8 |
-
app_file: app.py
|
| 9 |
-
# license: apache-2.0 # または適切なライセンス
|
| 10 |
-
# Pinned Hardware: T4 small (GPU) or CPU upgrade (CPU)
|
| 11 |
-
# pinned: false # 必要に応じてTrueに
|
| 12 |
-
# hardware: cpu-upgrade # or cuda-t4-small
|
| 13 |
-
# hf_token: YOUR_HF_TOKEN # Use secrets instead!
|
| 14 |
-
---
|
| 15 |
-
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
This Space demonstrates image tagging using a fine-tuned WD EVA02 model (converted to ONNX format).
|
| 19 |
-
|
| 20 |
-
**How to Use:**
|
| 21 |
-
1. Upload an image using the upload button.
|
| 22 |
-
2. Alternatively, paste an image URL into the browser (experimental paste handling).
|
| 23 |
-
3. Adjust the tag thresholds if needed.
|
| 24 |
-
4. Choose the output mode (Tags only or include visualization).
|
| 25 |
-
5. Click the "Predict" button.
|
| 26 |
-
|
| 27 |
-
**Note:**
|
| 28 |
-
- This Space uses a model from a **private** repository (`celstk/wd-eva02-lora-onnx`). You might need to duplicate this space and add your Hugging Face token (`HF_TOKEN`) to the Space secrets to allow downloading the model files.
|
| 29 |
- Image pasting behavior might vary across browsers.
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: CL EVA02 LoRA ONNX Tagger
|
| 3 |
+
emoji: 🖼️
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.43.0 # requirements.txt と合わせるか確認
|
| 8 |
+
app_file: app.py
|
| 9 |
+
# license: apache-2.0 # または適切なライセンス
|
| 10 |
+
# Pinned Hardware: T4 small (GPU) or CPU upgrade (CPU)
|
| 11 |
+
# pinned: false # 必要に応じてTrueに
|
| 12 |
+
# hardware: cpu-upgrade # or cuda-t4-small
|
| 13 |
+
# hf_token: YOUR_HF_TOKEN # Use secrets instead!
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# WD EVA02 LoRA ONNX Tagger
|
| 17 |
+
|
| 18 |
+
This Space demonstrates image tagging using a fine-tuned WD EVA02 model (converted to ONNX format).
|
| 19 |
+
|
| 20 |
+
**How to Use:**
|
| 21 |
+
1. Upload an image using the upload button.
|
| 22 |
+
2. Alternatively, paste an image URL into the browser (experimental paste handling).
|
| 23 |
+
3. Adjust the tag thresholds if needed.
|
| 24 |
+
4. Choose the output mode (Tags only or include visualization).
|
| 25 |
+
5. Click the "Predict" button.
|
| 26 |
+
|
| 27 |
+
**Note:**
|
| 28 |
+
- This Space uses a model from a **private** repository (`celstk/wd-eva02-lora-onnx`). You might need to duplicate this space and add your Hugging Face token (`HF_TOKEN`) to the Space secrets to allow downloading the model files.
|
| 29 |
- Image pasting behavior might vary across browsers.
|
app.py
CHANGED
|
@@ -199,14 +199,14 @@ def visualize_predictions(image: Image.Image, predictions: Dict, threshold: floa
|
|
| 199 |
|
| 200 |
# --- Plotting Setup ---
|
| 201 |
plt.rcParams['font.family'] = 'DejaVu Sans' # Ensure font compatibility
|
| 202 |
-
fig = plt.figure(figsize=(
|
| 203 |
gs = fig.add_gridspec(1, 2, width_ratios=[1.2, 1])
|
| 204 |
|
| 205 |
# Left side: Image
|
| 206 |
-
ax_img = fig.add_subplot(gs[0, 0])
|
| 207 |
-
ax_img.imshow(image)
|
| 208 |
-
ax_img.set_title("Original Image")
|
| 209 |
-
ax_img.axis('off')
|
| 210 |
|
| 211 |
# Right side: Tags
|
| 212 |
ax_tags = fig.add_subplot(gs[0, 1])
|
|
@@ -288,7 +288,7 @@ def visualize_predictions(image: Image.Image, predictions: Dict, threshold: floa
|
|
| 288 |
REPO_ID = "cella110n/cl_tagger"
|
| 289 |
# Use the specified ONNX model filename
|
| 290 |
ONNX_FILENAME = "cl_eva02_tagger_v1_250426/model.onnx"
|
| 291 |
-
#
|
| 292 |
TAG_MAPPING_FILENAME = "cl_eva02_tagger_v1_250426/tag_mapping.json"
|
| 293 |
CACHE_DIR = "./model_cache"
|
| 294 |
|
|
@@ -467,7 +467,7 @@ footer { display: none !important; }
|
|
| 467 |
|
| 468 |
with gr.Blocks(css=css) as demo:
|
| 469 |
gr.Markdown("# CL EVA02 ONNX Tagger")
|
| 470 |
-
gr.Markdown("Upload an image or paste an image URL to predict tags using the
|
| 471 |
with gr.Row():
|
| 472 |
with gr.Column(scale=1):
|
| 473 |
image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image")
|
|
|
|
| 199 |
|
| 200 |
# --- Plotting Setup ---
|
| 201 |
plt.rcParams['font.family'] = 'DejaVu Sans' # Ensure font compatibility
|
| 202 |
+
fig = plt.figure(figsize=(12, 20), dpi=100)
|
| 203 |
gs = fig.add_gridspec(1, 2, width_ratios=[1.2, 1])
|
| 204 |
|
| 205 |
# Left side: Image
|
| 206 |
+
# ax_img = fig.add_subplot(gs[0, 0])
|
| 207 |
+
# ax_img.imshow(image)
|
| 208 |
+
# ax_img.set_title("Original Image")
|
| 209 |
+
# ax_img.axis('off')
|
| 210 |
|
| 211 |
# Right side: Tags
|
| 212 |
ax_tags = fig.add_subplot(gs[0, 1])
|
|
|
|
| 288 |
REPO_ID = "cella110n/cl_tagger"
|
| 289 |
# Use the specified ONNX model filename
|
| 290 |
ONNX_FILENAME = "cl_eva02_tagger_v1_250426/model.onnx"
|
| 291 |
+
# Correct the tag mapping path to match the ONNX model's directory
|
| 292 |
TAG_MAPPING_FILENAME = "cl_eva02_tagger_v1_250426/tag_mapping.json"
|
| 293 |
CACHE_DIR = "./model_cache"
|
| 294 |
|
|
|
|
| 467 |
|
| 468 |
with gr.Blocks(css=css) as demo:
|
| 469 |
gr.Markdown("# CL EVA02 ONNX Tagger")
|
| 470 |
+
gr.Markdown("Upload an image or paste an image URL to predict tags using the CL EVA02 Tagger model (ONNX), fine-tuned from [SmilingWolf/wd-eva02-large-tagger-v3](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3).")
|
| 471 |
with gr.Row():
|
| 472 |
with gr.Column(scale=1):
|
| 473 |
image_input = gr.Image(type="pil", label="Input Image", elem_id="input-image")
|