Spaces:
Runtime error
Runtime error
Update test_mode.py
Browse files- test_mode.py +433 -433
test_mode.py
CHANGED
|
@@ -1,434 +1,434 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from torchvision import models, transforms
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
import math
|
| 6 |
-
from transformers import AutoModel, AutoTokenizer
|
| 7 |
-
from PIL import Image
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
-
import easyocr
|
| 10 |
-
import numpy as np
|
| 11 |
-
import re
|
| 12 |
-
import os
|
| 13 |
-
import io
|
| 14 |
-
import cv2
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 18 |
-
MODEL_PATH = os.path.join(BASE_DIR, "model", "
|
| 19 |
-
|
| 20 |
-
# =========================
|
| 21 |
-
# 1. Text Preprocessing
|
| 22 |
-
# =========================
|
| 23 |
-
def preprocess_text(text):
|
| 24 |
-
emoji_pattern = re.compile(
|
| 25 |
-
"["
|
| 26 |
-
"\U0001F600-\U0001F64F" # emoticons
|
| 27 |
-
"\U0001F300-\U0001F5FF" # symbols & pictographs
|
| 28 |
-
"\U0001F680-\U0001F6FF" # transport & map symbols
|
| 29 |
-
"\U0001F1E0-\U0001F1FF" # flags
|
| 30 |
-
"\U00002700-\U000027BF" # dingbats
|
| 31 |
-
"\U0001F900-\U0001F9FF" # supplemental symbols
|
| 32 |
-
"\U00002600-\U000026FF" # misc symbols
|
| 33 |
-
"\U00002B00-\U00002BFF" # arrows, etc.
|
| 34 |
-
"\U0001FA70-\U0001FAFF" # extended symbols
|
| 35 |
-
"]+",
|
| 36 |
-
flags=re.UNICODE
|
| 37 |
-
)
|
| 38 |
-
# Remove emojis
|
| 39 |
-
text = emoji_pattern.sub(r'', text)
|
| 40 |
-
# Lowercase and strip
|
| 41 |
-
text = text.lower().strip()
|
| 42 |
-
# Keep letters (including accented), and spaces
|
| 43 |
-
text = re.sub(r'[^a-zñÑéΓΓ³ΓΊΓΌ\s]', '', text)
|
| 44 |
-
# Normalize whitespace
|
| 45 |
-
text = re.sub(r'\s+', ' ', text)
|
| 46 |
-
|
| 47 |
-
return text
|
| 48 |
-
|
| 49 |
-
# =========================
|
| 50 |
-
# 2. OCR Extraction
|
| 51 |
-
# =========================
|
| 52 |
-
def ocr_extract_text(image_path, confidence_threshold=0.6):
|
| 53 |
-
reader = easyocr.Reader(['en', 'tl'], gpu=torch.cuda.is_available())
|
| 54 |
-
# # preprocess image for ocr
|
| 55 |
-
# image = cv2.cvtColor(image_path, cv2.COLOR_RGB2GRAY)
|
| 56 |
-
# # image = cv2.GaussianBlur(image,(5,5),0)
|
| 57 |
-
|
| 58 |
-
# result = reader.readtext(image, detail=1, paragraph=False, width_ths=0.7, height_ths=0.7)
|
| 59 |
-
|
| 60 |
-
# # Extract text and confidence scores
|
| 61 |
-
# texts = []
|
| 62 |
-
# confidences = []
|
| 63 |
-
|
| 64 |
-
# for detection in result:
|
| 65 |
-
# bbox, text, confidence = detection
|
| 66 |
-
# texts.append(text)
|
| 67 |
-
# confidences.append(confidence)
|
| 68 |
-
# final_text = " ".join(texts)
|
| 69 |
-
# preprocess_txt = preprocess_text(final_text)
|
| 70 |
-
# avg_confidence = sum(confidences) / len(confidences) if confidences else 0.0
|
| 71 |
-
# return final_text, preprocess_txt, avg_confidence
|
| 72 |
-
|
| 73 |
-
# Convert to grayscale
|
| 74 |
-
gray = cv2.cvtColor(image_path, cv2.COLOR_RGB2GRAY)
|
| 75 |
-
|
| 76 |
-
# First pass: OCR on raw grayscale
|
| 77 |
-
result = reader.readtext(gray, detail=1, paragraph=False, width_ths=0.7, height_ths=0.7)
|
| 78 |
-
texts, confidences = [], []
|
| 79 |
-
|
| 80 |
-
for detection in result:
|
| 81 |
-
if len(detection) == 3:
|
| 82 |
-
_, text, conf = detection
|
| 83 |
-
else:
|
| 84 |
-
text, conf = detection
|
| 85 |
-
|
| 86 |
-
if isinstance(text, list):
|
| 87 |
-
text = " ".join([str(t) for t in text if isinstance(t, str)])
|
| 88 |
-
|
| 89 |
-
texts.append(text)
|
| 90 |
-
try:
|
| 91 |
-
confidences.append(float(conf))
|
| 92 |
-
except (ValueError, TypeError):
|
| 93 |
-
confidences.append(0.0)
|
| 94 |
-
|
| 95 |
-
final_text = " ".join(texts)
|
| 96 |
-
avg_conf = sum(confidences)/len(confidences) if confidences else 0.0
|
| 97 |
-
|
| 98 |
-
# If confidence is low, retry with Gaussian blur
|
| 99 |
-
if avg_conf < confidence_threshold:
|
| 100 |
-
texts, confidences = [], []
|
| 101 |
-
gauss_img = cv2.GaussianBlur(gray, (5,5), 0)
|
| 102 |
-
result = reader.readtext(gauss_img, detail=1, paragraph=False, width_ths=0.7, height_ths=0.7)
|
| 103 |
-
|
| 104 |
-
for detection in result:
|
| 105 |
-
if len(detection) == 3:
|
| 106 |
-
_, text, conf = detection
|
| 107 |
-
else:
|
| 108 |
-
text, conf = detection
|
| 109 |
-
|
| 110 |
-
if isinstance(text, list):
|
| 111 |
-
text = " ".join([str(t) for t in text if isinstance(t, str)])
|
| 112 |
-
|
| 113 |
-
texts.append(text)
|
| 114 |
-
try:
|
| 115 |
-
confidences.append(float(conf))
|
| 116 |
-
except (ValueError, TypeError):
|
| 117 |
-
confidences.append(0.0)
|
| 118 |
-
|
| 119 |
-
final_text_gauss = " ".join(texts)
|
| 120 |
-
avg_conf_gauss = sum(confidences)/len(confidences) if confidences else 0.0
|
| 121 |
-
|
| 122 |
-
# Keep the version with higher confidence
|
| 123 |
-
if avg_conf_gauss > avg_conf:
|
| 124 |
-
final_text, avg_conf = final_text_gauss, avg_conf_gauss
|
| 125 |
-
|
| 126 |
-
if not final_text:
|
| 127 |
-
return "", "", 0.0
|
| 128 |
-
|
| 129 |
-
preprocess_txt = preprocess_text(final_text)
|
| 130 |
-
return final_text, preprocess_txt, avg_conf
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
# =========================
|
| 134 |
-
# 3. Image Preprocessing
|
| 135 |
-
# =========================
|
| 136 |
-
def resize_normalize_image(image_path, target_size=(224, 224)):
|
| 137 |
-
|
| 138 |
-
preprocess_image = transforms.Compose([
|
| 139 |
-
transforms.Resize(target_size, interpolation=transforms.InterpolationMode.BILINEAR),
|
| 140 |
-
transforms.ToTensor(),
|
| 141 |
-
transforms.Normalize(
|
| 142 |
-
mean=[0.485, 0.456, 0.406],
|
| 143 |
-
std=[0.229, 0.224, 0.225]
|
| 144 |
-
)
|
| 145 |
-
])
|
| 146 |
-
|
| 147 |
-
image_tensor = preprocess_image(image_path).unsqueeze(0) # Add batch dimension
|
| 148 |
-
return image_tensor
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
# =========================
|
| 152 |
-
# 4. Model Definitions
|
| 153 |
-
# =========================
|
| 154 |
-
class CrossAttentionModule(nn.Module):
|
| 155 |
-
def __init__(self, query_dim, key_value_dim, hidden_dim=256, num_heads=8, dropout=0.1):
|
| 156 |
-
super(CrossAttentionModule, self).__init__()
|
| 157 |
-
|
| 158 |
-
self.hidden_dim = hidden_dim
|
| 159 |
-
self.num_heads = num_heads
|
| 160 |
-
self.head_dim = hidden_dim // num_heads
|
| 161 |
-
self.scale = math.sqrt(self.head_dim) # βdk
|
| 162 |
-
|
| 163 |
-
assert hidden_dim % num_heads == 0, "hidden_dim must be divisible by num_heads"
|
| 164 |
-
|
| 165 |
-
# Query projection for H (image features)
|
| 166 |
-
self.query_proj = nn.Linear(query_dim, hidden_dim)
|
| 167 |
-
|
| 168 |
-
# Key and Value projections for G (text features)
|
| 169 |
-
self.key_proj = nn.Linear(key_value_dim, hidden_dim)
|
| 170 |
-
self.value_proj = nn.Linear(key_value_dim, hidden_dim)
|
| 171 |
-
|
| 172 |
-
# Output projection WO
|
| 173 |
-
self.out_proj = nn.Linear(hidden_dim, query_dim)
|
| 174 |
-
|
| 175 |
-
# Layer normalization
|
| 176 |
-
self.norm1 = nn.LayerNorm(query_dim)
|
| 177 |
-
self.norm2 = nn.LayerNorm(query_dim)
|
| 178 |
-
|
| 179 |
-
# MLP for final transformation
|
| 180 |
-
self.mlp = nn.Sequential(
|
| 181 |
-
nn.Linear(query_dim, query_dim * 4),
|
| 182 |
-
nn.ReLU(),
|
| 183 |
-
nn.Dropout(dropout),
|
| 184 |
-
nn.Linear(query_dim * 4, query_dim),
|
| 185 |
-
nn.Dropout(dropout)
|
| 186 |
-
)
|
| 187 |
-
|
| 188 |
-
self.dropout = nn.Dropout(dropout)
|
| 189 |
-
|
| 190 |
-
def forward(self, H, G):
|
| 191 |
-
"""
|
| 192 |
-
Args:
|
| 193 |
-
H: Query features [batch_size, seq_len_h, query_dim] (e.g., image patches)
|
| 194 |
-
G: Key/Value features [batch_size, seq_len_g, key_value_dim] (e.g., text tokens)
|
| 195 |
-
"""
|
| 196 |
-
batch_size, seq_len_h, _ = H.shape
|
| 197 |
-
seq_len_g = G.shape[1]
|
| 198 |
-
|
| 199 |
-
# Step 1: Project to Q, K, V
|
| 200 |
-
Q = self.query_proj(H) # WiQ H
|
| 201 |
-
K = self.key_proj(G) # WiK G
|
| 202 |
-
V = self.value_proj(G) # WiV G
|
| 203 |
-
|
| 204 |
-
# Step 2: Reshape for multi-head attention
|
| 205 |
-
Q = Q.view(batch_size, seq_len_h, self.num_heads, self.head_dim).transpose(1, 2)
|
| 206 |
-
K = K.view(batch_size, seq_len_g, self.num_heads, self.head_dim).transpose(1, 2)
|
| 207 |
-
V = V.view(batch_size, seq_len_g, self.num_heads, self.head_dim).transpose(1, 2)
|
| 208 |
-
|
| 209 |
-
# Step 3: Compute attention ATTi(H,G) = softmax((WiQ H)T(WiK G)/βdk)(WiV G)T
|
| 210 |
-
attention_scores = torch.matmul(Q, K.transpose(-2, -1)) / self.scale
|
| 211 |
-
attention_weights = F.softmax(attention_scores, dim=-1)
|
| 212 |
-
attention_weights = self.dropout(attention_weights)
|
| 213 |
-
attention_output = torch.matmul(attention_weights, V)
|
| 214 |
-
|
| 215 |
-
# Step 4: Concatenate heads and apply output projection
|
| 216 |
-
attention_output = attention_output.transpose(1, 2).contiguous().view(
|
| 217 |
-
batch_size, seq_len_h, self.hidden_dim
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
# MATT(H,G) = [ATT1...ATTh]WO
|
| 221 |
-
matt_output = self.out_proj(attention_output)
|
| 222 |
-
|
| 223 |
-
# Step 5: Z = LN(H + MATT(H,G))
|
| 224 |
-
Z = self.norm1(H + matt_output)
|
| 225 |
-
|
| 226 |
-
# Step 6: TIM(H,G) = LN(Z + MLP(Z))
|
| 227 |
-
mlp_output = self.mlp(Z)
|
| 228 |
-
tim_output = self.norm2(Z + mlp_output)
|
| 229 |
-
|
| 230 |
-
return tim_output
|
| 231 |
-
|
| 232 |
-
class MultimodalClassifier(nn.Module):
|
| 233 |
-
def __init__(self, num_classes=2, model_name='jcblaise/roberta-tagalog-base'):
|
| 234 |
-
super(MultimodalClassifier, self).__init__()
|
| 235 |
-
|
| 236 |
-
# Image encoder (ResNet-18, keep spatial features)
|
| 237 |
-
resnet = models.resnet18(pretrained=True)
|
| 238 |
-
modules = list(resnet.children())[:-2] # keep until last conv (before avgpool)
|
| 239 |
-
self.image_encoder = nn.Sequential(*modules) # output: (B, 512, 7, 7)
|
| 240 |
-
|
| 241 |
-
# Text encoder
|
| 242 |
-
self.text_encoder = AutoModel.from_pretrained(model_name)
|
| 243 |
-
|
| 244 |
-
# Cross-attention using paper formula
|
| 245 |
-
# Image attends to text
|
| 246 |
-
self.img_to_text_attention = CrossAttentionModule(
|
| 247 |
-
query_dim=512,
|
| 248 |
-
key_value_dim=self.text_encoder.config.hidden_size,
|
| 249 |
-
hidden_dim=256,
|
| 250 |
-
num_heads=8
|
| 251 |
-
)
|
| 252 |
-
|
| 253 |
-
# Text attends to image
|
| 254 |
-
self.text_to_img_attention = CrossAttentionModule(
|
| 255 |
-
query_dim=self.text_encoder.config.hidden_size,
|
| 256 |
-
key_value_dim=512,
|
| 257 |
-
hidden_dim=256,
|
| 258 |
-
num_heads=8
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
# Fusion & classifier
|
| 262 |
-
self.fusion = nn.Sequential(
|
| 263 |
-
nn.Linear(512 + self.text_encoder.config.hidden_size, 512),
|
| 264 |
-
nn.ReLU(),
|
| 265 |
-
nn.Dropout(0.3),
|
| 266 |
-
nn.Linear(512, 128),
|
| 267 |
-
nn.ReLU(),
|
| 268 |
-
nn.Dropout(0.3),
|
| 269 |
-
nn.Linear(128, num_classes)
|
| 270 |
-
)
|
| 271 |
-
|
| 272 |
-
def forward(self, images, input_ids, attention_mask):
|
| 273 |
-
# Extract image features
|
| 274 |
-
batch_size = images.size(0)
|
| 275 |
-
img_feats = self.image_encoder(images) # (B, 512, 7, 7)
|
| 276 |
-
img_feats = img_feats.flatten(2).permute(0, 2, 1) # (B, 49, 512)
|
| 277 |
-
|
| 278 |
-
# Extract text features
|
| 279 |
-
text_outputs = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask)
|
| 280 |
-
txt_feats = text_outputs.last_hidden_state # (B, seq_len, H)
|
| 281 |
-
|
| 282 |
-
# Cross-attention following paper formula
|
| 283 |
-
# TIM(img_feats, txt_feats) and TIM(txt_feats, img_feats)
|
| 284 |
-
attended_img = self.img_to_text_attention(img_feats, txt_feats)
|
| 285 |
-
attended_txt = self.text_to_img_attention(txt_feats, img_feats)
|
| 286 |
-
|
| 287 |
-
# Pool attended outputs
|
| 288 |
-
img_repr = attended_img.mean(dim=1) # (B, 512)
|
| 289 |
-
txt_repr = attended_txt[:, 0, :] # CLS token (B, hidden_size)
|
| 290 |
-
|
| 291 |
-
# Fusion
|
| 292 |
-
fused = torch.cat([img_repr, txt_repr], dim=1)
|
| 293 |
-
return self.fusion(fused)
|
| 294 |
-
|
| 295 |
-
# =========================
|
| 296 |
-
# 5. Load Model & Tokenizer
|
| 297 |
-
# =========================
|
| 298 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 299 |
-
|
| 300 |
-
model = MultimodalClassifier(num_classes=2)
|
| 301 |
-
model.load_state_dict(torch.load(MODEL_PATH, map_location=device))
|
| 302 |
-
model.to(device)
|
| 303 |
-
model.eval()
|
| 304 |
-
|
| 305 |
-
tokenizer = AutoTokenizer.from_pretrained("jcblaise/roberta-tagalog-base")
|
| 306 |
-
|
| 307 |
-
# =========================
|
| 308 |
-
# 6. Inference Function
|
| 309 |
-
# =========================
|
| 310 |
-
def run_inference(image_path):
|
| 311 |
-
# Convert bytes β PIL image
|
| 312 |
-
if isinstance(image_path, (bytes, bytearray)):
|
| 313 |
-
pil_img = Image.open(io.BytesIO(image_path)).convert("RGB")
|
| 314 |
-
elif isinstance(image_path, str):
|
| 315 |
-
pil_img = Image.open(image_path).convert("RGB")
|
| 316 |
-
elif isinstance(image_path, Image.Image):
|
| 317 |
-
pil_img = image_path.convert("RGB")
|
| 318 |
-
else:
|
| 319 |
-
raise TypeError(f"Unsupported input type: {type(image_path)}")
|
| 320 |
-
|
| 321 |
-
# OCR
|
| 322 |
-
np_image= np.array(pil_img)
|
| 323 |
-
raw_text, clean_text, confidence= ocr_extract_text(np_image)
|
| 324 |
-
|
| 325 |
-
if clean_text == "":
|
| 326 |
-
return {
|
| 327 |
-
"error": "This is not a meme. Upload a valid meme image with text.",
|
| 328 |
-
}
|
| 329 |
-
|
| 330 |
-
elif len(clean_text.split()) < 3:
|
| 331 |
-
return {
|
| 332 |
-
"error": "Insufficient text detected in the meme. Please upload a meme with more text. Minimum is 3 words.",
|
| 333 |
-
"clean_text": clean_text,
|
| 334 |
-
"raw_text": raw_text,
|
| 335 |
-
"confidence": confidence
|
| 336 |
-
}
|
| 337 |
-
|
| 338 |
-
# Image
|
| 339 |
-
img_tensor = resize_normalize_image(pil_img).to(device)
|
| 340 |
-
|
| 341 |
-
# Tokenize text
|
| 342 |
-
encoding = tokenizer(
|
| 343 |
-
clean_text, return_tensors='pt',
|
| 344 |
-
padding=True, truncation=True, max_length=128
|
| 345 |
-
)
|
| 346 |
-
input_ids = encoding['input_ids'].to(device)
|
| 347 |
-
attention_mask = encoding['attention_mask'].to(device)
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
# Forward pass
|
| 351 |
-
with torch.no_grad():
|
| 352 |
-
logits = model(img_tensor, input_ids, attention_mask)
|
| 353 |
-
probs = torch.softmax(logits, dim=1)
|
| 354 |
-
pred_class = torch.argmax(probs, dim=1).item()
|
| 355 |
-
pred_class = 'sexual' if pred_class == 1 else 'non-sexual'
|
| 356 |
-
|
| 357 |
-
return {
|
| 358 |
-
'original_size': pil_img.size,
|
| 359 |
-
'prediction': pred_class,
|
| 360 |
-
'probabilities': probs.cpu().numpy().tolist(),
|
| 361 |
-
'raw_text': raw_text,
|
| 362 |
-
'clean_text': clean_text,
|
| 363 |
-
'confidence': confidence
|
| 364 |
-
}
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
# =========================
|
| 368 |
-
# 7. Run as main
|
| 369 |
-
# =========================
|
| 370 |
-
# if __name__ == "__main__":
|
| 371 |
-
# # Example: load image from path
|
| 372 |
-
# IMAGE_PATH = "backend/OIP (1).jfif"
|
| 373 |
-
|
| 374 |
-
# # test_dimension_sensitivity(IMAGE_PATH)
|
| 375 |
-
|
| 376 |
-
# result = run_inference(IMAGE_PATH)
|
| 377 |
-
|
| 378 |
-
# # Print results
|
| 379 |
-
# print("Original Image Size:", result['original_size'])
|
| 380 |
-
# print("Prediction:", result['prediction'])
|
| 381 |
-
# print("Probabilities:", result['probabilities'])
|
| 382 |
-
# print("Raw OCR Text:", result['raw_text'])
|
| 383 |
-
# print("Clean OCR Text:", result['clean_text'])
|
| 384 |
-
# print("OCR Confidence:", result['confidence'])
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
# # Preprocess image
|
| 388 |
-
# pil_img = Image.open(IMAGE_PATH).convert("RGB")
|
| 389 |
-
# img_tensor = resize_normalize_image(pil_img).to(device)
|
| 390 |
-
|
| 391 |
-
# # -----------------------------
|
| 392 |
-
# # Generate ResNet heatmap
|
| 393 |
-
# # -----------------------------
|
| 394 |
-
# features = {}
|
| 395 |
-
# def hook_fn(module, input, output):
|
| 396 |
-
# features['value'] = output.detach()
|
| 397 |
-
|
| 398 |
-
# last_conv = model.image_encoder[-1]
|
| 399 |
-
# hook_handle = last_conv.register_forward_hook(hook_fn)
|
| 400 |
-
|
| 401 |
-
# with torch.no_grad():
|
| 402 |
-
# _ = model(img_tensor,
|
| 403 |
-
# input_ids=torch.zeros(1,1, dtype=torch.long, device=device),
|
| 404 |
-
# attention_mask=torch.ones(1,1, dtype=torch.long, device=device))
|
| 405 |
-
|
| 406 |
-
# hook_handle.remove()
|
| 407 |
-
|
| 408 |
-
# feat_tensor = features['value']
|
| 409 |
-
# heatmap_grid = feat_tensor[0].mean(dim=0).cpu().numpy()
|
| 410 |
-
# heatmap_grid = (heatmap_grid - heatmap_grid.min()) / (heatmap_grid.max() - heatmap_grid.min())
|
| 411 |
-
# heatmap_resized = np.uint8(255 * heatmap_grid)
|
| 412 |
-
# heatmap_resized = Image.fromarray(heatmap_resized).resize(pil_img.size, Image.NEAREST)
|
| 413 |
-
# heatmap_resized = np.array(heatmap_resized)
|
| 414 |
-
|
| 415 |
-
# probs = result['probabilities'][0]
|
| 416 |
-
# prob_text = f"non-sexual: {probs[0]:.2f}, sexual: {probs[1]:.2f}"
|
| 417 |
-
|
| 418 |
-
# # -----------------------------
|
| 419 |
-
# # Plot everything in one figure
|
| 420 |
-
# # -----------------------------
|
| 421 |
-
# fig, ax = plt.subplots(figsize=(6,6))
|
| 422 |
-
|
| 423 |
-
# ax.imshow(pil_img) # original image
|
| 424 |
-
# ax.imshow(heatmap_resized, cmap='jet', alpha=0.4, interpolation='nearest') # overlay heatmap
|
| 425 |
-
# ax.axis('off')
|
| 426 |
-
# ax.set_title(f"{result['prediction']} ({prob_text})", fontsize=14, color='blue')
|
| 427 |
-
|
| 428 |
-
# # Add colorbar
|
| 429 |
-
# sm = plt.cm.ScalarMappable(cmap='jet', norm=plt.Normalize(vmin=0, vmax=1))
|
| 430 |
-
# sm.set_array([])
|
| 431 |
-
# cbar = fig.colorbar(sm, ax=ax, fraction=0.046, pad=0.04)
|
| 432 |
-
# cbar.set_label('Feature Intensity')
|
| 433 |
-
|
| 434 |
# plt.show()
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torchvision import models, transforms
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import math
|
| 6 |
+
from transformers import AutoModel, AutoTokenizer
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import easyocr
|
| 10 |
+
import numpy as np
|
| 11 |
+
import re
|
| 12 |
+
import os
|
| 13 |
+
import io
|
| 14 |
+
import cv2
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 18 |
+
MODEL_PATH = os.path.join(BASE_DIR, "model", "best_multimodal_v4.pth")
|
| 19 |
+
|
| 20 |
+
# =========================
|
| 21 |
+
# 1. Text Preprocessing
|
| 22 |
+
# =========================
|
| 23 |
+
def preprocess_text(text):
|
| 24 |
+
emoji_pattern = re.compile(
|
| 25 |
+
"["
|
| 26 |
+
"\U0001F600-\U0001F64F" # emoticons
|
| 27 |
+
"\U0001F300-\U0001F5FF" # symbols & pictographs
|
| 28 |
+
"\U0001F680-\U0001F6FF" # transport & map symbols
|
| 29 |
+
"\U0001F1E0-\U0001F1FF" # flags
|
| 30 |
+
"\U00002700-\U000027BF" # dingbats
|
| 31 |
+
"\U0001F900-\U0001F9FF" # supplemental symbols
|
| 32 |
+
"\U00002600-\U000026FF" # misc symbols
|
| 33 |
+
"\U00002B00-\U00002BFF" # arrows, etc.
|
| 34 |
+
"\U0001FA70-\U0001FAFF" # extended symbols
|
| 35 |
+
"]+",
|
| 36 |
+
flags=re.UNICODE
|
| 37 |
+
)
|
| 38 |
+
# Remove emojis
|
| 39 |
+
text = emoji_pattern.sub(r'', text)
|
| 40 |
+
# Lowercase and strip
|
| 41 |
+
text = text.lower().strip()
|
| 42 |
+
# Keep letters (including accented), and spaces
|
| 43 |
+
text = re.sub(r'[^a-zñÑéΓΓ³ΓΊΓΌ\s]', '', text)
|
| 44 |
+
# Normalize whitespace
|
| 45 |
+
text = re.sub(r'\s+', ' ', text)
|
| 46 |
+
|
| 47 |
+
return text
|
| 48 |
+
|
| 49 |
+
# =========================
|
| 50 |
+
# 2. OCR Extraction
|
| 51 |
+
# =========================
|
| 52 |
+
def ocr_extract_text(image_path, confidence_threshold=0.6):
|
| 53 |
+
reader = easyocr.Reader(['en', 'tl'], gpu=torch.cuda.is_available())
|
| 54 |
+
# # preprocess image for ocr
|
| 55 |
+
# image = cv2.cvtColor(image_path, cv2.COLOR_RGB2GRAY)
|
| 56 |
+
# # image = cv2.GaussianBlur(image,(5,5),0)
|
| 57 |
+
|
| 58 |
+
# result = reader.readtext(image, detail=1, paragraph=False, width_ths=0.7, height_ths=0.7)
|
| 59 |
+
|
| 60 |
+
# # Extract text and confidence scores
|
| 61 |
+
# texts = []
|
| 62 |
+
# confidences = []
|
| 63 |
+
|
| 64 |
+
# for detection in result:
|
| 65 |
+
# bbox, text, confidence = detection
|
| 66 |
+
# texts.append(text)
|
| 67 |
+
# confidences.append(confidence)
|
| 68 |
+
# final_text = " ".join(texts)
|
| 69 |
+
# preprocess_txt = preprocess_text(final_text)
|
| 70 |
+
# avg_confidence = sum(confidences) / len(confidences) if confidences else 0.0
|
| 71 |
+
# return final_text, preprocess_txt, avg_confidence
|
| 72 |
+
|
| 73 |
+
# Convert to grayscale
|
| 74 |
+
gray = cv2.cvtColor(image_path, cv2.COLOR_RGB2GRAY)
|
| 75 |
+
|
| 76 |
+
# First pass: OCR on raw grayscale
|
| 77 |
+
result = reader.readtext(gray, detail=1, paragraph=False, width_ths=0.7, height_ths=0.7)
|
| 78 |
+
texts, confidences = [], []
|
| 79 |
+
|
| 80 |
+
for detection in result:
|
| 81 |
+
if len(detection) == 3:
|
| 82 |
+
_, text, conf = detection
|
| 83 |
+
else:
|
| 84 |
+
text, conf = detection
|
| 85 |
+
|
| 86 |
+
if isinstance(text, list):
|
| 87 |
+
text = " ".join([str(t) for t in text if isinstance(t, str)])
|
| 88 |
+
|
| 89 |
+
texts.append(text)
|
| 90 |
+
try:
|
| 91 |
+
confidences.append(float(conf))
|
| 92 |
+
except (ValueError, TypeError):
|
| 93 |
+
confidences.append(0.0)
|
| 94 |
+
|
| 95 |
+
final_text = " ".join(texts)
|
| 96 |
+
avg_conf = sum(confidences)/len(confidences) if confidences else 0.0
|
| 97 |
+
|
| 98 |
+
# If confidence is low, retry with Gaussian blur
|
| 99 |
+
if avg_conf < confidence_threshold:
|
| 100 |
+
texts, confidences = [], []
|
| 101 |
+
gauss_img = cv2.GaussianBlur(gray, (5,5), 0)
|
| 102 |
+
result = reader.readtext(gauss_img, detail=1, paragraph=False, width_ths=0.7, height_ths=0.7)
|
| 103 |
+
|
| 104 |
+
for detection in result:
|
| 105 |
+
if len(detection) == 3:
|
| 106 |
+
_, text, conf = detection
|
| 107 |
+
else:
|
| 108 |
+
text, conf = detection
|
| 109 |
+
|
| 110 |
+
if isinstance(text, list):
|
| 111 |
+
text = " ".join([str(t) for t in text if isinstance(t, str)])
|
| 112 |
+
|
| 113 |
+
texts.append(text)
|
| 114 |
+
try:
|
| 115 |
+
confidences.append(float(conf))
|
| 116 |
+
except (ValueError, TypeError):
|
| 117 |
+
confidences.append(0.0)
|
| 118 |
+
|
| 119 |
+
final_text_gauss = " ".join(texts)
|
| 120 |
+
avg_conf_gauss = sum(confidences)/len(confidences) if confidences else 0.0
|
| 121 |
+
|
| 122 |
+
# Keep the version with higher confidence
|
| 123 |
+
if avg_conf_gauss > avg_conf:
|
| 124 |
+
final_text, avg_conf = final_text_gauss, avg_conf_gauss
|
| 125 |
+
|
| 126 |
+
if not final_text:
|
| 127 |
+
return "", "", 0.0
|
| 128 |
+
|
| 129 |
+
preprocess_txt = preprocess_text(final_text)
|
| 130 |
+
return final_text, preprocess_txt, avg_conf
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# =========================
|
| 134 |
+
# 3. Image Preprocessing
|
| 135 |
+
# =========================
|
| 136 |
+
def resize_normalize_image(image_path, target_size=(224, 224)):
|
| 137 |
+
|
| 138 |
+
preprocess_image = transforms.Compose([
|
| 139 |
+
transforms.Resize(target_size, interpolation=transforms.InterpolationMode.BILINEAR),
|
| 140 |
+
transforms.ToTensor(),
|
| 141 |
+
transforms.Normalize(
|
| 142 |
+
mean=[0.485, 0.456, 0.406],
|
| 143 |
+
std=[0.229, 0.224, 0.225]
|
| 144 |
+
)
|
| 145 |
+
])
|
| 146 |
+
|
| 147 |
+
image_tensor = preprocess_image(image_path).unsqueeze(0) # Add batch dimension
|
| 148 |
+
return image_tensor
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# =========================
|
| 152 |
+
# 4. Model Definitions
|
| 153 |
+
# =========================
|
| 154 |
+
class CrossAttentionModule(nn.Module):
|
| 155 |
+
def __init__(self, query_dim, key_value_dim, hidden_dim=256, num_heads=8, dropout=0.1):
|
| 156 |
+
super(CrossAttentionModule, self).__init__()
|
| 157 |
+
|
| 158 |
+
self.hidden_dim = hidden_dim
|
| 159 |
+
self.num_heads = num_heads
|
| 160 |
+
self.head_dim = hidden_dim // num_heads
|
| 161 |
+
self.scale = math.sqrt(self.head_dim) # βdk
|
| 162 |
+
|
| 163 |
+
assert hidden_dim % num_heads == 0, "hidden_dim must be divisible by num_heads"
|
| 164 |
+
|
| 165 |
+
# Query projection for H (image features)
|
| 166 |
+
self.query_proj = nn.Linear(query_dim, hidden_dim)
|
| 167 |
+
|
| 168 |
+
# Key and Value projections for G (text features)
|
| 169 |
+
self.key_proj = nn.Linear(key_value_dim, hidden_dim)
|
| 170 |
+
self.value_proj = nn.Linear(key_value_dim, hidden_dim)
|
| 171 |
+
|
| 172 |
+
# Output projection WO
|
| 173 |
+
self.out_proj = nn.Linear(hidden_dim, query_dim)
|
| 174 |
+
|
| 175 |
+
# Layer normalization
|
| 176 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
| 177 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
| 178 |
+
|
| 179 |
+
# MLP for final transformation
|
| 180 |
+
self.mlp = nn.Sequential(
|
| 181 |
+
nn.Linear(query_dim, query_dim * 4),
|
| 182 |
+
nn.ReLU(),
|
| 183 |
+
nn.Dropout(dropout),
|
| 184 |
+
nn.Linear(query_dim * 4, query_dim),
|
| 185 |
+
nn.Dropout(dropout)
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
self.dropout = nn.Dropout(dropout)
|
| 189 |
+
|
| 190 |
+
def forward(self, H, G):
|
| 191 |
+
"""
|
| 192 |
+
Args:
|
| 193 |
+
H: Query features [batch_size, seq_len_h, query_dim] (e.g., image patches)
|
| 194 |
+
G: Key/Value features [batch_size, seq_len_g, key_value_dim] (e.g., text tokens)
|
| 195 |
+
"""
|
| 196 |
+
batch_size, seq_len_h, _ = H.shape
|
| 197 |
+
seq_len_g = G.shape[1]
|
| 198 |
+
|
| 199 |
+
# Step 1: Project to Q, K, V
|
| 200 |
+
Q = self.query_proj(H) # WiQ H
|
| 201 |
+
K = self.key_proj(G) # WiK G
|
| 202 |
+
V = self.value_proj(G) # WiV G
|
| 203 |
+
|
| 204 |
+
# Step 2: Reshape for multi-head attention
|
| 205 |
+
Q = Q.view(batch_size, seq_len_h, self.num_heads, self.head_dim).transpose(1, 2)
|
| 206 |
+
K = K.view(batch_size, seq_len_g, self.num_heads, self.head_dim).transpose(1, 2)
|
| 207 |
+
V = V.view(batch_size, seq_len_g, self.num_heads, self.head_dim).transpose(1, 2)
|
| 208 |
+
|
| 209 |
+
# Step 3: Compute attention ATTi(H,G) = softmax((WiQ H)T(WiK G)/βdk)(WiV G)T
|
| 210 |
+
attention_scores = torch.matmul(Q, K.transpose(-2, -1)) / self.scale
|
| 211 |
+
attention_weights = F.softmax(attention_scores, dim=-1)
|
| 212 |
+
attention_weights = self.dropout(attention_weights)
|
| 213 |
+
attention_output = torch.matmul(attention_weights, V)
|
| 214 |
+
|
| 215 |
+
# Step 4: Concatenate heads and apply output projection
|
| 216 |
+
attention_output = attention_output.transpose(1, 2).contiguous().view(
|
| 217 |
+
batch_size, seq_len_h, self.hidden_dim
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# MATT(H,G) = [ATT1...ATTh]WO
|
| 221 |
+
matt_output = self.out_proj(attention_output)
|
| 222 |
+
|
| 223 |
+
# Step 5: Z = LN(H + MATT(H,G))
|
| 224 |
+
Z = self.norm1(H + matt_output)
|
| 225 |
+
|
| 226 |
+
# Step 6: TIM(H,G) = LN(Z + MLP(Z))
|
| 227 |
+
mlp_output = self.mlp(Z)
|
| 228 |
+
tim_output = self.norm2(Z + mlp_output)
|
| 229 |
+
|
| 230 |
+
return tim_output
|
| 231 |
+
|
| 232 |
+
class MultimodalClassifier(nn.Module):
|
| 233 |
+
def __init__(self, num_classes=2, model_name='jcblaise/roberta-tagalog-base'):
|
| 234 |
+
super(MultimodalClassifier, self).__init__()
|
| 235 |
+
|
| 236 |
+
# Image encoder (ResNet-18, keep spatial features)
|
| 237 |
+
resnet = models.resnet18(pretrained=True)
|
| 238 |
+
modules = list(resnet.children())[:-2] # keep until last conv (before avgpool)
|
| 239 |
+
self.image_encoder = nn.Sequential(*modules) # output: (B, 512, 7, 7)
|
| 240 |
+
|
| 241 |
+
# Text encoder
|
| 242 |
+
self.text_encoder = AutoModel.from_pretrained(model_name)
|
| 243 |
+
|
| 244 |
+
# Cross-attention using paper formula
|
| 245 |
+
# Image attends to text
|
| 246 |
+
self.img_to_text_attention = CrossAttentionModule(
|
| 247 |
+
query_dim=512,
|
| 248 |
+
key_value_dim=self.text_encoder.config.hidden_size,
|
| 249 |
+
hidden_dim=256,
|
| 250 |
+
num_heads=8
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Text attends to image
|
| 254 |
+
self.text_to_img_attention = CrossAttentionModule(
|
| 255 |
+
query_dim=self.text_encoder.config.hidden_size,
|
| 256 |
+
key_value_dim=512,
|
| 257 |
+
hidden_dim=256,
|
| 258 |
+
num_heads=8
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
# Fusion & classifier
|
| 262 |
+
self.fusion = nn.Sequential(
|
| 263 |
+
nn.Linear(512 + self.text_encoder.config.hidden_size, 512),
|
| 264 |
+
nn.ReLU(),
|
| 265 |
+
nn.Dropout(0.3),
|
| 266 |
+
nn.Linear(512, 128),
|
| 267 |
+
nn.ReLU(),
|
| 268 |
+
nn.Dropout(0.3),
|
| 269 |
+
nn.Linear(128, num_classes)
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
def forward(self, images, input_ids, attention_mask):
|
| 273 |
+
# Extract image features
|
| 274 |
+
batch_size = images.size(0)
|
| 275 |
+
img_feats = self.image_encoder(images) # (B, 512, 7, 7)
|
| 276 |
+
img_feats = img_feats.flatten(2).permute(0, 2, 1) # (B, 49, 512)
|
| 277 |
+
|
| 278 |
+
# Extract text features
|
| 279 |
+
text_outputs = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask)
|
| 280 |
+
txt_feats = text_outputs.last_hidden_state # (B, seq_len, H)
|
| 281 |
+
|
| 282 |
+
# Cross-attention following paper formula
|
| 283 |
+
# TIM(img_feats, txt_feats) and TIM(txt_feats, img_feats)
|
| 284 |
+
attended_img = self.img_to_text_attention(img_feats, txt_feats)
|
| 285 |
+
attended_txt = self.text_to_img_attention(txt_feats, img_feats)
|
| 286 |
+
|
| 287 |
+
# Pool attended outputs
|
| 288 |
+
img_repr = attended_img.mean(dim=1) # (B, 512)
|
| 289 |
+
txt_repr = attended_txt[:, 0, :] # CLS token (B, hidden_size)
|
| 290 |
+
|
| 291 |
+
# Fusion
|
| 292 |
+
fused = torch.cat([img_repr, txt_repr], dim=1)
|
| 293 |
+
return self.fusion(fused)
|
| 294 |
+
|
| 295 |
+
# =========================
|
| 296 |
+
# 5. Load Model & Tokenizer
|
| 297 |
+
# =========================
|
| 298 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 299 |
+
|
| 300 |
+
model = MultimodalClassifier(num_classes=2)
|
| 301 |
+
model.load_state_dict(torch.load(MODEL_PATH, map_location=device))
|
| 302 |
+
model.to(device)
|
| 303 |
+
model.eval()
|
| 304 |
+
|
| 305 |
+
tokenizer = AutoTokenizer.from_pretrained("jcblaise/roberta-tagalog-base")
|
| 306 |
+
|
| 307 |
+
# =========================
|
| 308 |
+
# 6. Inference Function
|
| 309 |
+
# =========================
|
| 310 |
+
def run_inference(image_path):
|
| 311 |
+
# Convert bytes β PIL image
|
| 312 |
+
if isinstance(image_path, (bytes, bytearray)):
|
| 313 |
+
pil_img = Image.open(io.BytesIO(image_path)).convert("RGB")
|
| 314 |
+
elif isinstance(image_path, str):
|
| 315 |
+
pil_img = Image.open(image_path).convert("RGB")
|
| 316 |
+
elif isinstance(image_path, Image.Image):
|
| 317 |
+
pil_img = image_path.convert("RGB")
|
| 318 |
+
else:
|
| 319 |
+
raise TypeError(f"Unsupported input type: {type(image_path)}")
|
| 320 |
+
|
| 321 |
+
# OCR
|
| 322 |
+
np_image= np.array(pil_img)
|
| 323 |
+
raw_text, clean_text, confidence= ocr_extract_text(np_image)
|
| 324 |
+
|
| 325 |
+
if clean_text == "":
|
| 326 |
+
return {
|
| 327 |
+
"error": "This is not a meme. Upload a valid meme image with text.",
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
elif len(clean_text.split()) < 3:
|
| 331 |
+
return {
|
| 332 |
+
"error": "Insufficient text detected in the meme. Please upload a meme with more text. Minimum is 3 words.",
|
| 333 |
+
"clean_text": clean_text,
|
| 334 |
+
"raw_text": raw_text,
|
| 335 |
+
"confidence": confidence
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
# Image
|
| 339 |
+
img_tensor = resize_normalize_image(pil_img).to(device)
|
| 340 |
+
|
| 341 |
+
# Tokenize text
|
| 342 |
+
encoding = tokenizer(
|
| 343 |
+
clean_text, return_tensors='pt',
|
| 344 |
+
padding=True, truncation=True, max_length=128
|
| 345 |
+
)
|
| 346 |
+
input_ids = encoding['input_ids'].to(device)
|
| 347 |
+
attention_mask = encoding['attention_mask'].to(device)
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
# Forward pass
|
| 351 |
+
with torch.no_grad():
|
| 352 |
+
logits = model(img_tensor, input_ids, attention_mask)
|
| 353 |
+
probs = torch.softmax(logits, dim=1)
|
| 354 |
+
pred_class = torch.argmax(probs, dim=1).item()
|
| 355 |
+
pred_class = 'sexual' if pred_class == 1 else 'non-sexual'
|
| 356 |
+
|
| 357 |
+
return {
|
| 358 |
+
'original_size': pil_img.size,
|
| 359 |
+
'prediction': pred_class,
|
| 360 |
+
'probabilities': probs.cpu().numpy().tolist(),
|
| 361 |
+
'raw_text': raw_text,
|
| 362 |
+
'clean_text': clean_text,
|
| 363 |
+
'confidence': confidence
|
| 364 |
+
}
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
# =========================
|
| 368 |
+
# 7. Run as main
|
| 369 |
+
# =========================
|
| 370 |
+
# if __name__ == "__main__":
|
| 371 |
+
# # Example: load image from path
|
| 372 |
+
# IMAGE_PATH = "backend/OIP (1).jfif"
|
| 373 |
+
|
| 374 |
+
# # test_dimension_sensitivity(IMAGE_PATH)
|
| 375 |
+
|
| 376 |
+
# result = run_inference(IMAGE_PATH)
|
| 377 |
+
|
| 378 |
+
# # Print results
|
| 379 |
+
# print("Original Image Size:", result['original_size'])
|
| 380 |
+
# print("Prediction:", result['prediction'])
|
| 381 |
+
# print("Probabilities:", result['probabilities'])
|
| 382 |
+
# print("Raw OCR Text:", result['raw_text'])
|
| 383 |
+
# print("Clean OCR Text:", result['clean_text'])
|
| 384 |
+
# print("OCR Confidence:", result['confidence'])
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
# # Preprocess image
|
| 388 |
+
# pil_img = Image.open(IMAGE_PATH).convert("RGB")
|
| 389 |
+
# img_tensor = resize_normalize_image(pil_img).to(device)
|
| 390 |
+
|
| 391 |
+
# # -----------------------------
|
| 392 |
+
# # Generate ResNet heatmap
|
| 393 |
+
# # -----------------------------
|
| 394 |
+
# features = {}
|
| 395 |
+
# def hook_fn(module, input, output):
|
| 396 |
+
# features['value'] = output.detach()
|
| 397 |
+
|
| 398 |
+
# last_conv = model.image_encoder[-1]
|
| 399 |
+
# hook_handle = last_conv.register_forward_hook(hook_fn)
|
| 400 |
+
|
| 401 |
+
# with torch.no_grad():
|
| 402 |
+
# _ = model(img_tensor,
|
| 403 |
+
# input_ids=torch.zeros(1,1, dtype=torch.long, device=device),
|
| 404 |
+
# attention_mask=torch.ones(1,1, dtype=torch.long, device=device))
|
| 405 |
+
|
| 406 |
+
# hook_handle.remove()
|
| 407 |
+
|
| 408 |
+
# feat_tensor = features['value']
|
| 409 |
+
# heatmap_grid = feat_tensor[0].mean(dim=0).cpu().numpy()
|
| 410 |
+
# heatmap_grid = (heatmap_grid - heatmap_grid.min()) / (heatmap_grid.max() - heatmap_grid.min())
|
| 411 |
+
# heatmap_resized = np.uint8(255 * heatmap_grid)
|
| 412 |
+
# heatmap_resized = Image.fromarray(heatmap_resized).resize(pil_img.size, Image.NEAREST)
|
| 413 |
+
# heatmap_resized = np.array(heatmap_resized)
|
| 414 |
+
|
| 415 |
+
# probs = result['probabilities'][0]
|
| 416 |
+
# prob_text = f"non-sexual: {probs[0]:.2f}, sexual: {probs[1]:.2f}"
|
| 417 |
+
|
| 418 |
+
# # -----------------------------
|
| 419 |
+
# # Plot everything in one figure
|
| 420 |
+
# # -----------------------------
|
| 421 |
+
# fig, ax = plt.subplots(figsize=(6,6))
|
| 422 |
+
|
| 423 |
+
# ax.imshow(pil_img) # original image
|
| 424 |
+
# ax.imshow(heatmap_resized, cmap='jet', alpha=0.4, interpolation='nearest') # overlay heatmap
|
| 425 |
+
# ax.axis('off')
|
| 426 |
+
# ax.set_title(f"{result['prediction']} ({prob_text})", fontsize=14, color='blue')
|
| 427 |
+
|
| 428 |
+
# # Add colorbar
|
| 429 |
+
# sm = plt.cm.ScalarMappable(cmap='jet', norm=plt.Normalize(vmin=0, vmax=1))
|
| 430 |
+
# sm.set_array([])
|
| 431 |
+
# cbar = fig.colorbar(sm, ax=ax, fraction=0.046, pad=0.04)
|
| 432 |
+
# cbar.set_label('Feature Intensity')
|
| 433 |
+
|
| 434 |
# plt.show()
|