|
|
import tensorflow as tf |
|
|
from tensorflow import keras |
|
|
from tensorflow.keras import layers |
|
|
|
|
|
from huggingface_hub import from_pretrained_keras |
|
|
|
|
|
import numpy as np |
|
|
import gradio as gr |
|
|
|
|
|
characters = {'2', '3', '4', '5', '6', '7', '8', 'b', 'c', 'd', 'e', 'f', 'g', 'm', 'n', 'p', 'w', 'x', 'y'} |
|
|
max_length = 5 |
|
|
img_width = 200 |
|
|
img_height = 50 |
|
|
|
|
|
model = from_pretrained_keras("keras-io/ocr-for-captcha") |
|
|
|
|
|
prediction_model = keras.models.Model( |
|
|
model.get_layer(name="image").input, model.get_layer(name="dense2").output |
|
|
) |
|
|
|
|
|
|
|
|
char_to_num = layers.StringLookup( |
|
|
vocabulary=list(characters), mask_token=None |
|
|
) |
|
|
|
|
|
|
|
|
num_to_char = layers.StringLookup( |
|
|
vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True |
|
|
) |
|
|
|
|
|
def decode_batch_predictions(pred): |
|
|
input_len = np.ones(pred.shape[0]) * pred.shape[1] |
|
|
|
|
|
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=False, beam_width=5)[0][0][ |
|
|
:, :max_length |
|
|
] |
|
|
|
|
|
output_text = [] |
|
|
for res in results: |
|
|
res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8") |
|
|
output_text.append(res) |
|
|
return output_text |
|
|
|
|
|
def classify_image(img_path): |
|
|
|
|
|
img = tf.io.read_file(img_path) |
|
|
|
|
|
img = tf.io.decode_png(img, channels=1) |
|
|
|
|
|
img = tf.image.convert_image_dtype(img, tf.float32) |
|
|
|
|
|
img = tf.image.resize(img, [img_height, img_width]) |
|
|
|
|
|
|
|
|
img = tf.transpose(img, perm=[1, 0, 2]) |
|
|
img = tf.expand_dims(img, axis=0) |
|
|
preds = prediction_model.predict(img) |
|
|
pred_text = decode_batch_predictions(preds) |
|
|
return pred_text |
|
|
|
|
|
image = gr.inputs.Image(type='filepath') |
|
|
text = gr.outputs.Textbox() |
|
|
|
|
|
iface = gr.Interface(classify_image,image,text, |
|
|
title="OCR for CAPTCHA", |
|
|
description = "Keras Implementation of OCR model for reading captcha 🤖🦹🏻", |
|
|
article = "Author: <a href=\"https://huggingface.co/anuragshas\">Anurag Singh</a>" |
|
|
) |
|
|
|
|
|
|
|
|
iface.launch() |
|
|
|
|
|
|