|
|
import tensorflow as tf |
|
|
from tensorflow import keras |
|
|
from tensorflow.keras import layers |
|
|
|
|
|
from huggingface_hub import from_pretrained_keras |
|
|
|
|
|
import numpy as np |
|
|
import gradio as gr |
|
|
|
|
|
max_length = 5 |
|
|
img_width = 200 |
|
|
img_height = 50 |
|
|
|
|
|
model = from_pretrained_keras("keras-io/ocr-for-captcha", compile=False) |
|
|
|
|
|
prediction_model = keras.models.Model( |
|
|
model.get_layer(name="image").input, model.get_layer(name="dense2").output |
|
|
) |
|
|
|
|
|
with open("vocab.txt", "r") as f: |
|
|
vocab = f.read().splitlines() |
|
|
|
|
|
|
|
|
num_to_char = layers.StringLookup(vocabulary=vocab, mask_token=None, invert=True) |
|
|
|
|
|
|
|
|
def decode_batch_predictions(pred): |
|
|
input_len = np.ones(pred.shape[0]) * pred.shape[1] |
|
|
|
|
|
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][ |
|
|
:, :max_length |
|
|
] |
|
|
|
|
|
output_text = [] |
|
|
for res in results: |
|
|
res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8") |
|
|
output_text.append(res) |
|
|
return output_text |
|
|
|
|
|
|
|
|
def classify_image(img_path): |
|
|
|
|
|
img = tf.io.read_file(img_path) |
|
|
|
|
|
img = tf.io.decode_png(img, channels=1) |
|
|
|
|
|
img = tf.image.convert_image_dtype(img, tf.float32) |
|
|
|
|
|
img = tf.image.resize(img, [img_height, img_width]) |
|
|
|
|
|
|
|
|
img = tf.transpose(img, perm=[1, 0, 2]) |
|
|
img = tf.expand_dims(img, axis=0) |
|
|
preds = prediction_model.predict(img) |
|
|
pred_text = decode_batch_predictions(preds) |
|
|
return pred_text[0] |
|
|
|
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=classify_image, |
|
|
inputs=gr.Image(type="filepath"), |
|
|
outputs=gr.Textbox(), |
|
|
title="CAPTCHA OCR", |
|
|
description="Upload a CAPTCHA image to recognize the text", |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch(share=True) |
|
|
|