Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,197 +1,223 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
-
import
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
-
import supervision as sv
|
| 6 |
-
from ultralytics import YOLO
|
| 7 |
from PIL import Image
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
import os
|
| 11 |
-
import matplotlib.pyplot as plt
|
| 12 |
-
import pandas as pd
|
| 13 |
-
from pathlib import Path
|
| 14 |
-
import json
|
| 15 |
|
| 16 |
-
# Create directories
|
|
|
|
| 17 |
os.makedirs("models", exist_ok=True)
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# Define classes (from DocLayNet dataset)
|
| 34 |
-
CLASSES = ["Caption", "Footnote", "Formula", "List-item", "Page-footer", "Page-header",
|
| 35 |
-
"Picture", "Section-header", "Table", "Text", "Title"]
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
VISUAL_ELEMENTS = [
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# Try newer versions approach
|
| 43 |
-
COLORS = sv.ColorPalette.default()
|
| 44 |
-
except (AttributeError, TypeError):
|
| 45 |
try:
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
def
|
| 57 |
-
|
| 58 |
-
|
|
|
|
| 59 |
|
| 60 |
-
# Convert to numpy array if it's not already
|
| 61 |
-
if isinstance(image, np.ndarray):
|
| 62 |
-
img = image
|
| 63 |
-
else:
|
| 64 |
-
img = np.array(image)
|
| 65 |
-
|
| 66 |
-
# Get image dimensions
|
| 67 |
-
img_height, img_width = img.shape[:2]
|
| 68 |
-
|
| 69 |
-
# Run inference
|
| 70 |
-
results = model(img)[0]
|
| 71 |
-
|
| 72 |
-
# Format detections
|
| 73 |
try:
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
scene=img.copy(),
|
| 97 |
-
detections=detections,
|
| 98 |
-
labels=labels
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
# Extract bounding boxes for all visual elements
|
| 102 |
-
boxes_data = []
|
| 103 |
-
for i, (class_id, xyxy, confidence) in enumerate(zip(detections.class_id, detections.xyxy, detections.confidence)):
|
| 104 |
-
class_name = CLASSES[class_id]
|
| 105 |
-
|
| 106 |
-
# Include all visual elements (Pictures, Captions, Tables, Formulas)
|
| 107 |
-
if class_name in VISUAL_ELEMENTS:
|
| 108 |
-
x1, y1, x2, y2 = map(int, xyxy)
|
| 109 |
-
width = x2 - x1
|
| 110 |
-
height = y2 - y1
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
return None
|
| 139 |
-
return json_data
|
| 140 |
|
| 141 |
-
#
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
with gr.Row():
|
| 155 |
-
with gr.Column():
|
| 156 |
-
output_table = gr.DataFrame(label="Visual Elements Bounding Boxes")
|
| 157 |
-
json_output = gr.JSON(label="JSON Output")
|
| 158 |
-
download_btn = gr.Button("Download JSON")
|
| 159 |
-
json_file = gr.File(label="Download JSON File", interactive=False)
|
| 160 |
-
|
| 161 |
-
analyze_btn.click(
|
| 162 |
-
fn=predict_layout,
|
| 163 |
-
inputs=input_image,
|
| 164 |
-
outputs=[output_image, output_table, json_output]
|
| 165 |
-
)
|
| 166 |
-
|
| 167 |
-
download_btn.click(
|
| 168 |
-
fn=download_json,
|
| 169 |
-
inputs=[json_output],
|
| 170 |
-
outputs=[json_file]
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
gr.Markdown("## Detected Visual Elements")
|
| 174 |
-
gr.Markdown("""
|
| 175 |
-
This application detects and extracts coordinates for the following visual elements:
|
| 176 |
-
|
| 177 |
-
- **Pictures**: Diagrams, photos, illustrations, flowcharts, etc.
|
| 178 |
-
- **Tables**: Structured data presented in rows and columns
|
| 179 |
-
- **Formulas**: Mathematical equations and expressions
|
| 180 |
-
- **Captions**: Text describing pictures or tables
|
| 181 |
-
|
| 182 |
-
For each element, the system returns:
|
| 183 |
-
- Element type (class)
|
| 184 |
-
- Confidence score (0-1)
|
| 185 |
-
- Coordinates (x1, y1, x2, y2)
|
| 186 |
-
- Width and height in pixels
|
| 187 |
-
""")
|
| 188 |
-
|
| 189 |
-
gr.Markdown("## About")
|
| 190 |
-
gr.Markdown("""
|
| 191 |
-
This demo uses YOLOv8n for document layout analysis, with a focus on extracting visual elements.
|
| 192 |
-
The model is a smaller, more efficient version trained on the DocLayNet dataset.
|
| 193 |
-
""")
|
| 194 |
|
|
|
|
| 195 |
if __name__ == "__main__":
|
| 196 |
-
#
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["GRADIO_TEMP_DIR"] = "./tmp"
|
| 3 |
+
|
| 4 |
+
import sys
|
| 5 |
import torch
|
| 6 |
+
import torchvision
|
| 7 |
+
import gradio as gr
|
| 8 |
import numpy as np
|
|
|
|
|
|
|
| 9 |
from PIL import Image
|
| 10 |
+
from huggingface_hub import snapshot_download
|
| 11 |
+
from visualization import visualize_bbox
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Create necessary directories
|
| 14 |
+
os.makedirs("tmp", exist_ok=True)
|
| 15 |
os.makedirs("models", exist_ok=True)
|
| 16 |
|
| 17 |
+
# Define class mapping
|
| 18 |
+
id_to_names = {
|
| 19 |
+
0: 'title',
|
| 20 |
+
1: 'plain text',
|
| 21 |
+
2: 'abandon',
|
| 22 |
+
3: 'figure',
|
| 23 |
+
4: 'figure_caption',
|
| 24 |
+
5: 'table',
|
| 25 |
+
6: 'table_caption',
|
| 26 |
+
7: 'table_footnote',
|
| 27 |
+
8: 'isolate_formula',
|
| 28 |
+
9: 'formula_caption'
|
| 29 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# Visual elements for extraction (can be customized)
|
| 32 |
+
VISUAL_ELEMENTS = ['figure', 'table', 'figure_caption', 'table_caption', 'isolate_formula']
|
| 33 |
|
| 34 |
+
def load_model():
|
| 35 |
+
"""Load the DocLayout-YOLO model from Hugging Face"""
|
|
|
|
|
|
|
|
|
|
| 36 |
try:
|
| 37 |
+
# Download model weights if they don't exist
|
| 38 |
+
model_dir = snapshot_download(
|
| 39 |
+
'juliozhao/DocLayout-YOLO-DocStructBench',
|
| 40 |
+
local_dir='./models/DocLayout-YOLO-DocStructBench'
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Select device
|
| 44 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 45 |
+
print(f"Using device: {device}")
|
| 46 |
+
|
| 47 |
+
# Import and load the model
|
| 48 |
+
from doclayout_yolo import YOLOv10
|
| 49 |
+
model = YOLOv10(os.path.join(
|
| 50 |
+
os.path.dirname(__file__),
|
| 51 |
+
"models",
|
| 52 |
+
"DocLayout-YOLO-DocStructBench",
|
| 53 |
+
"doclayout_yolo_docstructbench_imgsz1024.pt"
|
| 54 |
+
))
|
| 55 |
+
|
| 56 |
+
return model, device
|
| 57 |
+
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Error loading model: {e}")
|
| 60 |
+
return None, 'cpu'
|
| 61 |
|
| 62 |
+
def recognize_image(input_img, conf_threshold, iou_threshold):
|
| 63 |
+
"""Process input image and detect document elements"""
|
| 64 |
+
if input_img is None:
|
| 65 |
+
return None, None
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
try:
|
| 68 |
+
# Load model (global model if already loaded)
|
| 69 |
+
global model, device
|
| 70 |
+
|
| 71 |
+
# Run prediction
|
| 72 |
+
det_res = model.predict(
|
| 73 |
+
input_img,
|
| 74 |
+
imgsz=1024,
|
| 75 |
+
conf=conf_threshold,
|
| 76 |
+
device=device,
|
| 77 |
+
)[0]
|
| 78 |
+
|
| 79 |
+
# Extract detection results
|
| 80 |
+
boxes = det_res.__dict__['boxes'].xyxy
|
| 81 |
+
classes = det_res.__dict__['boxes'].cls
|
| 82 |
+
scores = det_res.__dict__['boxes'].conf
|
| 83 |
+
|
| 84 |
+
# Apply non-maximum suppression
|
| 85 |
+
indices = torchvision.ops.nms(
|
| 86 |
+
boxes=torch.Tensor(boxes),
|
| 87 |
+
scores=torch.Tensor(scores),
|
| 88 |
+
iou_threshold=iou_threshold
|
| 89 |
)
|
| 90 |
+
|
| 91 |
+
boxes, scores, classes = boxes[indices], scores[indices], classes[indices]
|
| 92 |
+
|
| 93 |
+
# Handle single detection case
|
| 94 |
+
if len(boxes.shape) == 1:
|
| 95 |
+
boxes = np.expand_dims(boxes, 0)
|
| 96 |
+
scores = np.expand_dims(scores, 0)
|
| 97 |
+
classes = np.expand_dims(classes, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
# Visualize results
|
| 100 |
+
vis_result = visualize_bbox(input_img, boxes, classes, scores, id_to_names)
|
| 101 |
+
|
| 102 |
+
# Create DataFrame for extraction
|
| 103 |
+
elements_data = []
|
| 104 |
+
for i, (box, cls_id, score) in enumerate(zip(boxes, classes, scores)):
|
| 105 |
+
class_name = id_to_names[int(cls_id)]
|
| 106 |
+
|
| 107 |
+
# Only extract visual elements if specified
|
| 108 |
+
if not VISUAL_ELEMENTS or class_name in VISUAL_ELEMENTS:
|
| 109 |
+
x1, y1, x2, y2 = map(int, box)
|
| 110 |
+
width = x2 - x1
|
| 111 |
+
height = y2 - y1
|
| 112 |
+
|
| 113 |
+
elements_data.append({
|
| 114 |
+
"class": class_name,
|
| 115 |
+
"confidence": float(score),
|
| 116 |
+
"x1": x1,
|
| 117 |
+
"y1": y1,
|
| 118 |
+
"x2": x2,
|
| 119 |
+
"y2": y2,
|
| 120 |
+
"width": width,
|
| 121 |
+
"height": height
|
| 122 |
+
})
|
| 123 |
+
|
| 124 |
+
# Convert to DataFrame for display
|
| 125 |
+
import pandas as pd
|
| 126 |
+
if elements_data:
|
| 127 |
+
df = pd.DataFrame(elements_data)
|
| 128 |
+
df = df[["class", "confidence", "x1", "y1", "x2", "y2", "width", "height"]]
|
| 129 |
+
else:
|
| 130 |
+
df = pd.DataFrame(columns=["class", "confidence", "x1", "y1", "x2", "y2", "width", "height"])
|
| 131 |
+
|
| 132 |
+
return vis_result, df
|
| 133 |
+
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Error processing image: {e}")
|
| 136 |
+
import traceback
|
| 137 |
+
traceback.print_exc()
|
| 138 |
+
return None, None
|
| 139 |
|
| 140 |
+
def gradio_reset():
|
| 141 |
+
"""Reset the UI"""
|
| 142 |
+
return gr.update(value=None), gr.update(value=None), gr.update(value=None)
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
# Create basic HTML header
|
| 145 |
+
header_html = """
|
| 146 |
+
<div style="text-align: center; max-width: 900px; margin: 0 auto;">
|
| 147 |
+
<div>
|
| 148 |
+
<h1 style="font-weight: 900; margin-bottom: 7px;">
|
| 149 |
+
Document Layout Analysis
|
| 150 |
+
</h1>
|
| 151 |
+
<p style="margin-top: 7px; font-size: 94%;">
|
| 152 |
+
Detect and extract structured elements from document images using DocLayout-YOLO
|
| 153 |
+
</p>
|
| 154 |
+
</div>
|
| 155 |
+
</div>
|
| 156 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
# Main execution
|
| 159 |
if __name__ == "__main__":
|
| 160 |
+
# Load model
|
| 161 |
+
model, device = load_model()
|
| 162 |
+
|
| 163 |
+
# Create Gradio interface
|
| 164 |
+
with gr.Blocks() as demo:
|
| 165 |
+
gr.HTML(header_html)
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column():
|
| 169 |
+
input_img = gr.Image(label="Upload Document Image", interactive=True)
|
| 170 |
+
|
| 171 |
+
with gr.Row():
|
| 172 |
+
clear_btn = gr.Button(value="Clear")
|
| 173 |
+
predict_btn = gr.Button(value="Detect Elements", interactive=True, variant="primary")
|
| 174 |
+
|
| 175 |
+
with gr.Row():
|
| 176 |
+
conf_threshold = gr.Slider(
|
| 177 |
+
label="Confidence Threshold",
|
| 178 |
+
minimum=0.0,
|
| 179 |
+
maximum=1.0,
|
| 180 |
+
step=0.05,
|
| 181 |
+
value=0.25,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
iou_threshold = gr.Slider(
|
| 185 |
+
label="NMS IOU Threshold",
|
| 186 |
+
minimum=0.0,
|
| 187 |
+
maximum=1.0,
|
| 188 |
+
step=0.05,
|
| 189 |
+
value=0.45,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
with gr.Column():
|
| 193 |
+
output_img = gr.Image(label="Detection Result", interactive=False)
|
| 194 |
+
output_table = gr.DataFrame(label="Detected Visual Elements")
|
| 195 |
+
|
| 196 |
+
with gr.Row():
|
| 197 |
+
gr.Markdown("""
|
| 198 |
+
## Detected Elements
|
| 199 |
+
This application detects and extracts the following elements from document images:
|
| 200 |
+
|
| 201 |
+
- **Title**: Document and section titles
|
| 202 |
+
- **Plain Text**: Regular paragraph text
|
| 203 |
+
- **Figure**: Images, charts, diagrams, etc.
|
| 204 |
+
- **Figure Caption**: Text describing figures
|
| 205 |
+
- **Table**: Tabular data structures
|
| 206 |
+
- **Table Caption**: Text describing tables
|
| 207 |
+
- **Table Footnote**: Notes below tables
|
| 208 |
+
- **Formula**: Mathematical equations
|
| 209 |
+
- **Formula Caption**: Text describing formulas
|
| 210 |
+
|
| 211 |
+
For each element, the system returns coordinates and confidence scores.
|
| 212 |
+
""")
|
| 213 |
+
|
| 214 |
+
# Connect events
|
| 215 |
+
clear_btn.click(gradio_reset, inputs=None, outputs=[input_img, output_img, output_table])
|
| 216 |
+
predict_btn.click(
|
| 217 |
+
recognize_image,
|
| 218 |
+
inputs=[input_img, conf_threshold, iou_threshold],
|
| 219 |
+
outputs=[output_img, output_table]
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Launch the interface
|
| 223 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860)
|