Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,208 Bytes
4845d25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Depth Anything 3 API module.
This module provides the main API for Depth Anything 3, including model loading,
inference, and export capabilities. It supports both single and nested model architectures.
"""
from __future__ import annotations
import time
from typing import Optional, Sequence
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
from PIL import Image
from depth_anything_3.cfg import create_object, load_config
from depth_anything_3.registry import MODEL_REGISTRY
from depth_anything_3.specs import Prediction
from depth_anything_3.utils.export import export
from depth_anything_3.utils.geometry import affine_inverse
from depth_anything_3.utils.io.input_processor import InputProcessor
from depth_anything_3.utils.io.output_processor import OutputProcessor
from depth_anything_3.utils.logger import logger
from depth_anything_3.utils.pose_align import align_poses_umeyama
torch.backends.cudnn.benchmark = False
# logger.info("CUDNN Benchmark Disabled")
SAFETENSORS_NAME = "model.safetensors"
CONFIG_NAME = "config.json"
class DepthAnything3(nn.Module, PyTorchModelHubMixin):
"""
Depth Anything 3 main API class.
This class provides a high-level interface for depth estimation using Depth Anything 3.
It supports both single and nested model architectures with metric scaling capabilities.
Features:
- Hugging Face Hub integration via PyTorchModelHubMixin
- Support for multiple model presets (vitb, vitg, nested variants)
- Automatic mixed precision inference
- Export capabilities for various formats (GLB, PLY, NPZ, etc.)
- Camera pose estimation and metric depth scaling
Usage:
# Load from Hugging Face Hub
model = DepthAnything3.from_pretrained("huggingface/model-name")
# Or create with specific preset
model = DepthAnything3(preset="vitg")
# Run inference
prediction = model.inference(images, export_dir="output", export_format="glb")
"""
_commit_hash: str | None = None # Set by mixin when loading from Hub
def __init__(self, model_name: str = "da3-large", **kwargs):
"""
Initialize DepthAnything3 with specified preset.
Args:
model_name: The name of the model preset to use.
Examples: 'da3-giant', 'da3-large', 'da3metric-large', 'da3nested-giant-large'.
**kwargs: Additional keyword arguments (currently unused).
"""
super().__init__()
self.model_name = model_name
# Build the underlying network
self.config = load_config(MODEL_REGISTRY[self.model_name])
self.model = create_object(self.config)
self.model.eval()
# Initialize processors
self.input_processor = InputProcessor()
self.output_processor = OutputProcessor()
# Device management (set by user)
self.device = None
@torch.inference_mode()
def forward(
self,
image: torch.Tensor,
extrinsics: torch.Tensor | None = None,
intrinsics: torch.Tensor | None = None,
export_feat_layers: list[int] | None = None,
infer_gs: bool = False,
) -> dict[str, torch.Tensor]:
"""
Forward pass through the model.
Args:
image: Input batch with shape ``(B, N, 3, H, W)`` on the model device.
extrinsics: Optional camera extrinsics with shape ``(B, N, 4, 4)``.
intrinsics: Optional camera intrinsics with shape ``(B, N, 3, 3)``.
export_feat_layers: Layer indices to return intermediate features for.
Returns:
Dictionary containing model predictions
"""
# Determine optimal autocast dtype
autocast_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
with torch.no_grad():
with torch.autocast(device_type=image.device.type, dtype=autocast_dtype):
return self.model(image, extrinsics, intrinsics, export_feat_layers, infer_gs)
def inference(
self,
image: list[np.ndarray | Image.Image | str],
extrinsics: np.ndarray | None = None,
intrinsics: np.ndarray | None = None,
align_to_input_ext_scale: bool = True,
infer_gs: bool = False,
render_exts: np.ndarray | None = None,
render_ixts: np.ndarray | None = None,
render_hw: tuple[int, int] | None = None,
process_res: int = 504,
process_res_method: str = "upper_bound_resize",
export_dir: str | None = None,
export_format: str = "mini_npz",
export_feat_layers: Sequence[int] | None = None,
# GLB export parameters
conf_thresh_percentile: float = 40.0,
num_max_points: int = 1_000_000,
show_cameras: bool = True,
# Feat_vis export parameters
feat_vis_fps: int = 15,
export_kwargs: Optional[dict] = {},
) -> Prediction:
"""
Run inference on input images.
Args:
image: List of input images (numpy arrays, PIL Images, or file paths)
extrinsics: Camera extrinsics (N, 4, 4)
intrinsics: Camera intrinsics (N, 3, 3)
align_to_input_ext_scale: whether to align the input pose scale to the prediction
infer_gs: Enable the 3D Gaussian branch (needed for `gs_ply`/`gs_video` exports)
render_exts: Optional render extrinsics for Gaussian video export
render_ixts: Optional render intrinsics for Gaussian video export
render_hw: Optional render resolution for Gaussian video export
process_res: Processing resolution
process_res_method: Resize method for processing
export_dir: Directory to export results
export_format: Export format (mini_npz, npz, glb, ply, gs, gs_video)
export_feat_layers: Layer indices to export intermediate features from
conf_thresh_percentile: [GLB] Lower percentile for adaptive confidence threshold (default: 40.0) # noqa: E501
num_max_points: [GLB] Maximum number of points in the point cloud (default: 1,000,000)
show_cameras: [GLB] Show camera wireframes in the exported scene (default: True)
feat_vis_fps: [FEAT_VIS] Frame rate for output video (default: 15)
export_kwargs: additional arguments to export functions.
Returns:
Prediction object containing depth maps and camera parameters
"""
if "gs" in export_format:
assert infer_gs, "must set `infer_gs=True` to perform gs-related export."
# Preprocess images
imgs_cpu, extrinsics, intrinsics = self._preprocess_inputs(
image, extrinsics, intrinsics, process_res, process_res_method
)
# Prepare tensors for model
imgs, ex_t, in_t = self._prepare_model_inputs(imgs_cpu, extrinsics, intrinsics)
# Normalize extrinsics
ex_t_norm = self._normalize_extrinsics(ex_t.clone() if ex_t is not None else None)
# Run model forward pass
export_feat_layers = list(export_feat_layers) if export_feat_layers is not None else []
raw_output = self._run_model_forward(imgs, ex_t_norm, in_t, export_feat_layers, infer_gs)
# Convert raw output to prediction
prediction = self._convert_to_prediction(raw_output)
# Align prediction to extrinsincs
prediction = self._align_to_input_extrinsics_intrinsics(
extrinsics, intrinsics, prediction, align_to_input_ext_scale
)
# Add processed images for visualization
prediction = self._add_processed_images(prediction, imgs_cpu)
# Export if requested
if export_dir is not None:
if "gs" in export_format:
if infer_gs and "gs_video" not in export_format:
export_format = f"{export_format}-gs_video"
if "gs_video" in export_format:
if "gs_video" not in export_kwargs:
export_kwargs["gs_video"] = {}
export_kwargs["gs_video"].update(
{
"extrinsics": render_exts,
"intrinsics": render_ixts,
"out_image_hw": render_hw,
}
)
# Add GLB export parameters
if "glb" in export_format:
if "glb" not in export_kwargs:
export_kwargs["glb"] = {}
export_kwargs["glb"].update(
{
"conf_thresh_percentile": conf_thresh_percentile,
"num_max_points": num_max_points,
"show_cameras": show_cameras,
}
)
# Add Feat_vis export parameters
if "feat_vis" in export_format:
if "feat_vis" not in export_kwargs:
export_kwargs["feat_vis"] = {}
export_kwargs["feat_vis"].update(
{
"fps": feat_vis_fps,
}
)
self._export_results(prediction, export_format, export_dir, **export_kwargs)
return prediction
def _preprocess_inputs(
self,
image: list[np.ndarray | Image.Image | str],
extrinsics: np.ndarray | None = None,
intrinsics: np.ndarray | None = None,
process_res: int = 504,
process_res_method: str = "upper_bound_resize",
) -> torch.Tensor:
"""Preprocess input images using input processor."""
start_time = time.time()
imgs_cpu, extrinsics, intrinsics = self.input_processor(
image,
extrinsics.copy() if extrinsics is not None else None,
intrinsics.copy() if intrinsics is not None else None,
process_res,
process_res_method,
)
end_time = time.time()
logger.info(
"Processed Images Done taking",
end_time - start_time,
"seconds. Shape: ",
imgs_cpu.shape,
)
return imgs_cpu, extrinsics, intrinsics
def _prepare_model_inputs(
self,
imgs_cpu: torch.Tensor,
extrinsics: torch.tensor | None,
intrinsics: torch.tensor | None,
) -> tuple[torch.Tensor, torch.Tensor | None, torch.Tensor | None]:
"""Prepare tensors for model input."""
device = self._get_model_device()
# Move images to model device
imgs = imgs_cpu.to(device, non_blocking=True)[None].float()
# Convert camera parameters to tensors
ex_t = (
extrinsics.to(device, non_blocking=True)[None].float()
if extrinsics is not None
else None
)
in_t = (
intrinsics.to(device, non_blocking=True)[None].float()
if intrinsics is not None
else None
)
return imgs, ex_t, in_t
def _normalize_extrinsics(self, ex_t: torch.Tensor) -> torch.Tensor:
"""Normalize extrinsics"""
if ex_t is None:
return None
transform = affine_inverse(ex_t[:, :1])
ex_t_norm = ex_t @ transform
c2ws = affine_inverse(ex_t_norm)
translations = c2ws[..., :3, 3]
dists = translations.norm(dim=-1)
median_dist = torch.median(dists)
median_dist = torch.clamp(median_dist, min=1e-1)
ex_t_norm[..., :3, 3] = ex_t_norm[..., :3, 3] / median_dist
return ex_t_norm
def _align_to_input_extrinsics_intrinsics(
self,
extrinsics: torch.Tensor,
intrinsics: torch.Tensor,
prediction: Prediction,
align_to_input_ext_scale: bool = True,
ransac_view_thresh: int = 10,
) -> Prediction:
"""Align depth map to input extrinsics"""
if extrinsics is None:
return prediction
prediction.intrinsics = intrinsics.numpy()
_, _, scale, aligned_extrinsics = align_poses_umeyama(
prediction.extrinsics,
extrinsics.numpy(),
ransac=len(extrinsics) >= ransac_view_thresh,
return_aligned=True,
random_state=42,
)
if align_to_input_ext_scale:
prediction.extrinsics = extrinsics[..., :3, :].numpy()
prediction.depth /= scale
else:
prediction.extrinsics = aligned_extrinsics
return prediction
def _run_model_forward(
self,
imgs: torch.Tensor,
ex_t: torch.Tensor | None,
in_t: torch.Tensor | None,
export_feat_layers: Sequence[int] | None = None,
infer_gs: bool = False,
) -> dict[str, torch.Tensor]:
"""Run model forward pass."""
device = imgs.device
need_sync = device.type == "cuda"
if need_sync:
torch.cuda.synchronize(device)
start_time = time.time()
feat_layers = list(export_feat_layers) if export_feat_layers is not None else None
output = self.forward(imgs, ex_t, in_t, feat_layers, infer_gs)
if need_sync:
torch.cuda.synchronize(device)
end_time = time.time()
logger.info(f"Model Forward Pass Done. Time: {end_time - start_time} seconds")
return output
def _convert_to_prediction(self, raw_output: dict[str, torch.Tensor]) -> Prediction:
"""Convert raw model output to Prediction object."""
start_time = time.time()
output = self.output_processor(raw_output)
end_time = time.time()
logger.info(f"Conversion to Prediction Done. Time: {end_time - start_time} seconds")
return output
def _add_processed_images(self, prediction: Prediction, imgs_cpu: torch.Tensor) -> Prediction:
"""Add processed images to prediction for visualization."""
# Convert from (N, 3, H, W) to (N, H, W, 3) and denormalize
processed_imgs = imgs_cpu.permute(0, 2, 3, 1).cpu().numpy() # (N, H, W, 3)
# Denormalize from ImageNet normalization
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
processed_imgs = processed_imgs * std + mean
processed_imgs = np.clip(processed_imgs, 0, 1)
processed_imgs = (processed_imgs * 255).astype(np.uint8)
prediction.processed_images = processed_imgs
return prediction
def _export_results(
self, prediction: Prediction, export_format: str, export_dir: str, **kwargs
) -> None:
"""Export results to specified format and directory."""
start_time = time.time()
export(prediction, export_format, export_dir, **kwargs)
end_time = time.time()
logger.info(f"Export Results Done. Time: {end_time - start_time} seconds")
def _get_model_device(self) -> torch.device:
"""
Get the device where the model is located.
Returns:
Device where the model parameters are located
Raises:
ValueError: If no tensors are found in the model
"""
if self.device is not None:
return self.device
# Find device from parameters
for param in self.parameters():
self.device = param.device
return param.device
# Find device from buffers
for buffer in self.buffers():
self.device = buffer.device
return buffer.device
raise ValueError("No tensor found in model")
|