File size: 8,207 Bytes
4845d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Unified Inference Service
Provides unified interface for local and remote inference
"""

from typing import Any, Dict, List, Optional, Union
import numpy as np
import requests
import typer

from ..api import DepthAnything3


class InferenceService:
    """Unified inference service class"""

    def __init__(self, model_dir: str, device: str = "cuda"):
        self.model_dir = model_dir
        self.device = device
        self.model = None

    def load_model(self):
        """Load model"""
        if self.model is None:
            typer.echo(f"Loading model from {self.model_dir}...")
            self.model = DepthAnything3.from_pretrained(self.model_dir).to(self.device)
        return self.model

    def run_local_inference(
        self,
        image_paths: List[str],
        export_dir: str,
        export_format: str = "mini_npz-glb",
        process_res: int = 504,
        process_res_method: str = "upper_bound_resize",
        export_feat_layers: List[int] = None,
        extrinsics: Optional[np.ndarray] = None,
        intrinsics: Optional[np.ndarray] = None,
        align_to_input_ext_scale: bool = True,
        conf_thresh_percentile: float = 40.0,
        num_max_points: int = 1_000_000,
        show_cameras: bool = True,
        feat_vis_fps: int = 15,
    ) -> Any:
        """Run local inference"""
        if export_feat_layers is None:
            export_feat_layers = []

        model = self.load_model()

        # Prepare inference parameters
        inference_kwargs = {
            "image": image_paths,
            "export_dir": export_dir,
            "export_format": export_format,
            "process_res": process_res,
            "process_res_method": process_res_method,
            "export_feat_layers": export_feat_layers,
            "align_to_input_ext_scale": align_to_input_ext_scale,
            "conf_thresh_percentile": conf_thresh_percentile,
            "num_max_points": num_max_points,
            "show_cameras": show_cameras,
            "feat_vis_fps": feat_vis_fps,
        }

        # Add pose data (if exists)
        if extrinsics is not None:
            inference_kwargs["extrinsics"] = extrinsics
        if intrinsics is not None:
            inference_kwargs["intrinsics"] = intrinsics

        # Run inference
        typer.echo(f"Running inference on {len(image_paths)} images...")
        prediction = model.inference(**inference_kwargs)

        typer.echo(f"Results saved to {export_dir}")
        typer.echo(f"Export format: {export_format}")

        return prediction

    def run_backend_inference(
        self,
        image_paths: List[str],
        export_dir: str,
        backend_url: str,
        export_format: str = "mini_npz-glb",
        process_res: int = 504,
        process_res_method: str = "upper_bound_resize",
        export_feat_layers: List[int] = None,
        extrinsics: Optional[np.ndarray] = None,
        intrinsics: Optional[np.ndarray] = None,
        align_to_input_ext_scale: bool = True,
        conf_thresh_percentile: float = 40.0,
        num_max_points: int = 1_000_000,
        show_cameras: bool = True,
        feat_vis_fps: int = 15,
    ) -> Dict[str, Any]:
        """Run backend inference"""
        if export_feat_layers is None:
            export_feat_layers = []

        # Check backend status
        if not self._check_backend_status(backend_url):
            raise typer.BadParameter(f"Backend service is not running at {backend_url}")

        # Prepare payload
        payload = {
            "image_paths": image_paths,
            "export_dir": export_dir,
            "export_format": export_format,
            "process_res": process_res,
            "process_res_method": process_res_method,
            "export_feat_layers": export_feat_layers,
            "align_to_input_ext_scale": align_to_input_ext_scale,
            "conf_thresh_percentile": conf_thresh_percentile,
            "num_max_points": num_max_points,
            "show_cameras": show_cameras,
            "feat_vis_fps": feat_vis_fps,
        }

        # Add pose data (if exists)
        if extrinsics is not None:
            payload["extrinsics"] = [ext.astype(np.float64).tolist() for ext in extrinsics]
        if intrinsics is not None:
            payload["intrinsics"] = [intr.astype(np.float64).tolist() for intr in intrinsics]

        # Submit task
        typer.echo("Submitting inference task to backend...")
        try:
            response = requests.post(f"{backend_url}/inference", json=payload, timeout=30)
            response.raise_for_status()
            result = response.json()

            if result["success"]:
                task_id = result["task_id"]
                typer.echo("Task submitted successfully!")
                typer.echo(f"Task ID: {task_id}")
                typer.echo(f"Results will be saved to: {export_dir}")
                typer.echo(f"Check backend logs for progress updates with task ID: {task_id}")
                return result
            else:
                raise typer.BadParameter(
                    f"Backend inference submission failed: {result['message']}"
                )
        except requests.exceptions.RequestException as e:
            raise typer.BadParameter(f"Backend inference submission failed: {e}")

    def _check_backend_status(self, backend_url: str) -> bool:
        """Check backend status"""
        try:
            response = requests.get(f"{backend_url}/status", timeout=5)
            return response.status_code == 200
        except Exception:
            return False


def run_inference(
    image_paths: List[str],
    export_dir: str,
    model_dir: str,
    device: str = "cuda",
    backend_url: Optional[str] = None,
    export_format: str = "mini_npz-glb",
    process_res: int = 504,
    process_res_method: str = "upper_bound_resize",
    export_feat_layers: List[int] = None,
    extrinsics: Optional[np.ndarray] = None,
    intrinsics: Optional[np.ndarray] = None,
    align_to_input_ext_scale: bool = True,
    conf_thresh_percentile: float = 40.0,
    num_max_points: int = 1_000_000,
    show_cameras: bool = True,
    feat_vis_fps: int = 15,
) -> Union[Any, Dict[str, Any]]:
    """Unified inference interface"""

    service = InferenceService(model_dir, device)

    if backend_url:
        return service.run_backend_inference(
            image_paths=image_paths,
            export_dir=export_dir,
            backend_url=backend_url,
            export_format=export_format,
            process_res=process_res,
            process_res_method=process_res_method,
            export_feat_layers=export_feat_layers,
            extrinsics=extrinsics,
            intrinsics=intrinsics,
            align_to_input_ext_scale=align_to_input_ext_scale,
            conf_thresh_percentile=conf_thresh_percentile,
            num_max_points=num_max_points,
            show_cameras=show_cameras,
            feat_vis_fps=feat_vis_fps,
        )
    else:
        return service.run_local_inference(
            image_paths=image_paths,
            export_dir=export_dir,
            export_format=export_format,
            process_res=process_res,
            process_res_method=process_res_method,
            export_feat_layers=export_feat_layers,
            extrinsics=extrinsics,
            intrinsics=intrinsics,
            align_to_input_ext_scale=align_to_input_ext_scale,
            conf_thresh_percentile=conf_thresh_percentile,
            num_max_points=num_max_points,
            show_cameras=show_cameras,
            feat_vis_fps=feat_vis_fps,
        )