Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,253 Bytes
4845d25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Optional
import numpy as np
import torch
from einops import rearrange, repeat
from plyfile import PlyData, PlyElement
from torch import Tensor
from depth_anything_3.specs import Gaussians
def construct_list_of_attributes(num_rest: int) -> list[str]:
attributes = ["x", "y", "z", "nx", "ny", "nz"]
for i in range(3):
attributes.append(f"f_dc_{i}")
for i in range(num_rest):
attributes.append(f"f_rest_{i}")
attributes.append("opacity")
for i in range(3):
attributes.append(f"scale_{i}")
for i in range(4):
attributes.append(f"rot_{i}")
return attributes
def export_ply(
means: Tensor, # "gaussian 3"
scales: Tensor, # "gaussian 3"
rotations: Tensor, # "gaussian 4"
harmonics: Tensor, # "gaussian 3 d_sh"
opacities: Tensor, # "gaussian"
path: Path,
shift_and_scale: bool = False,
save_sh_dc_only: bool = True,
match_3dgs_mcmc_dev: Optional[bool] = False,
):
if shift_and_scale:
# Shift the scene so that the median Gaussian is at the origin.
means = means - means.median(dim=0).values
# Rescale the scene so that most Gaussians are within range [-1, 1].
scale_factor = means.abs().quantile(0.95, dim=0).max()
means = means / scale_factor
scales = scales / scale_factor
rotations = rotations.detach().cpu().numpy()
# Since current model use SH_degree = 4,
# which require large memory to store, we can only save the DC band to save memory.
f_dc = harmonics[..., 0]
f_rest = harmonics[..., 1:].flatten(start_dim=1)
if match_3dgs_mcmc_dev:
sh_degree = 3
n_rest = 3 * (sh_degree + 1) ** 2 - 3
f_rest = repeat(
torch.zeros_like(harmonics[..., :1]), "... i -> ... (n i)", n=(n_rest // 3)
).flatten(start_dim=1)
dtype_full = [
(attribute, "f4")
for attribute in construct_list_of_attributes(num_rest=n_rest)
if attribute not in ("nx", "ny", "nz")
]
else:
dtype_full = [
(attribute, "f4")
for attribute in construct_list_of_attributes(
0 if save_sh_dc_only else f_rest.shape[1]
)
]
elements = np.empty(means.shape[0], dtype=dtype_full)
attributes = [
means.detach().cpu().numpy(),
torch.zeros_like(means).detach().cpu().numpy(),
f_dc.detach().cpu().contiguous().numpy(),
f_rest.detach().cpu().contiguous().numpy(),
opacities[..., None].detach().cpu().numpy(),
scales.log().detach().cpu().numpy(),
rotations,
]
if match_3dgs_mcmc_dev:
attributes.pop(1) # dummy normal is not needed
elif save_sh_dc_only:
attributes.pop(3) # remove f_rest from attributes
attributes = np.concatenate(attributes, axis=1)
elements[:] = list(map(tuple, attributes))
path.parent.mkdir(exist_ok=True, parents=True)
PlyData([PlyElement.describe(elements, "vertex")]).write(path)
def inverse_sigmoid(x):
return torch.log(x / (1 - x))
def save_gaussian_ply(
gaussians: Gaussians,
save_path: str,
ctx_depth: torch.Tensor, # depth of input views; for getting shape and filtering, "v h w 1"
shift_and_scale: bool = False,
save_sh_dc_only: bool = True,
gs_views_interval: int = 1,
inv_opacity: Optional[bool] = True,
prune_by_depth_percent: Optional[float] = 1.0,
prune_border_gs: Optional[bool] = True,
match_3dgs_mcmc_dev: Optional[bool] = False,
):
b = gaussians.means.shape[0]
assert b == 1, "must set batch_size=1 when exporting 3D gaussians"
src_v, out_h, out_w, _ = ctx_depth.shape
# extract gs params
world_means = gaussians.means
world_shs = gaussians.harmonics
world_rotations = gaussians.rotations
gs_scales = gaussians.scales
gs_opacities = inverse_sigmoid(gaussians.opacities) if inv_opacity else gaussians.opacities
# Create a mask to filter the Gaussians.
# TODO: prune the sky region here
# throw away Gaussians at the borders, since they're generally of lower quality.
if prune_border_gs:
mask = torch.zeros_like(ctx_depth, dtype=torch.bool)
gstrim_h = int(8 / 256 * out_h)
gstrim_w = int(8 / 256 * out_w)
mask[:, gstrim_h:-gstrim_h, gstrim_w:-gstrim_w, :] = 1
else:
mask = torch.ones_like(ctx_depth, dtype=torch.bool)
# trim the far away point based on depth;
if prune_by_depth_percent is not None and prune_by_depth_percent < 1:
in_depths = ctx_depth
d_percentile = torch.quantile(
in_depths.view(in_depths.shape[0], -1), q=prune_by_depth_percent, dim=1
).view(-1, 1, 1)
d_mask = (in_depths[..., 0] <= d_percentile).unsqueeze(-1)
mask = mask & d_mask
mask = mask.squeeze(-1) # v h w
# helper fn, must place after mask
def trim_select_reshape(element):
selected_element = rearrange(
element[0], "(v h w) ... -> v h w ...", v=src_v, h=out_h, w=out_w
)
selected_element = selected_element[::gs_views_interval][mask[::gs_views_interval]]
return selected_element
export_ply(
means=trim_select_reshape(world_means),
scales=trim_select_reshape(gs_scales),
rotations=trim_select_reshape(world_rotations),
harmonics=trim_select_reshape(world_shs),
opacities=trim_select_reshape(gs_opacities),
path=Path(save_path),
shift_and_scale=shift_and_scale,
save_sh_dc_only=save_sh_dc_only,
match_3dgs_mcmc_dev=match_3dgs_mcmc_dev,
)
|