linhaotong
update
b9f87ab
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Input Processing Service
Handles different types of inputs (image, images, colmap, video)
"""
import glob
import os
from typing import List, Tuple
import cv2
import numpy as np
import typer
from ..utils.read_write_model import read_model
class InputHandler:
"""Base input handler class"""
@staticmethod
def validate_path(path: str, path_type: str = "file") -> str:
"""Validate path"""
if not os.path.exists(path):
raise typer.BadParameter(f"{path_type} not found: {path}")
return path
@staticmethod
def handle_export_dir(export_dir: str, auto_cleanup: bool = False) -> str:
"""Handle export directory"""
if os.path.exists(export_dir):
if auto_cleanup:
typer.echo(f"Auto-cleaning existing export directory: {export_dir}")
import shutil
shutil.rmtree(export_dir)
os.makedirs(export_dir, exist_ok=True)
else:
typer.echo(f"Export directory '{export_dir}' already exists.")
if typer.confirm("Do you want to clean it and continue?"):
import shutil
shutil.rmtree(export_dir)
os.makedirs(export_dir, exist_ok=True)
typer.echo(f"Cleaned export directory: {export_dir}")
else:
typer.echo("Operation cancelled.")
raise typer.Exit(0)
else:
os.makedirs(export_dir, exist_ok=True)
return export_dir
class ImageHandler(InputHandler):
"""Single image handler"""
@staticmethod
def process(image_path: str) -> List[str]:
"""Process single image"""
InputHandler.validate_path(image_path, "Image file")
return [image_path]
class ImagesHandler(InputHandler):
"""Image directory handler"""
@staticmethod
def process(images_dir: str, image_extensions: str = "png,jpg,jpeg") -> List[str]:
"""Process image directory"""
InputHandler.validate_path(images_dir, "Images directory")
# Parse extensions
extensions = [ext.strip().lower() for ext in image_extensions.split(",")]
extensions = [ext if ext.startswith(".") else f".{ext}" for ext in extensions]
# Find image files
image_files = []
for ext in extensions:
pattern = f"*{ext}"
image_files.extend(glob.glob(os.path.join(images_dir, pattern)))
image_files.extend(glob.glob(os.path.join(images_dir, pattern.upper())))
image_files = sorted(list(set(image_files))) # Remove duplicates and sort
if not image_files:
raise typer.BadParameter(
f"No image files found in {images_dir} with extensions: {extensions}"
)
typer.echo(f"Found {len(image_files)} images to process")
return image_files
class ColmapHandler(InputHandler):
"""COLMAP data handler"""
@staticmethod
def process(
colmap_dir: str, sparse_subdir: str = ""
) -> Tuple[List[str], np.ndarray, np.ndarray]:
"""Process COLMAP data"""
InputHandler.validate_path(colmap_dir, "COLMAP directory")
# Build paths
images_dir = os.path.join(colmap_dir, "images")
if sparse_subdir:
sparse_dir = os.path.join(colmap_dir, "sparse", sparse_subdir)
else:
sparse_dir = os.path.join(colmap_dir, "sparse")
InputHandler.validate_path(images_dir, "Images directory")
InputHandler.validate_path(sparse_dir, "Sparse reconstruction directory")
# Load COLMAP data
typer.echo("Loading COLMAP reconstruction data...")
try:
cameras, images, points3D = read_model(sparse_dir)
typer.echo(
f"Loaded COLMAP data: {len(cameras)} cameras, {len(images)} images, "
f"{len(points3D)} 3D points."
)
# Get image files and pose data
image_files = []
extrinsics = []
intrinsics = []
for image_id, image_data in images.items():
image_name = image_data.name
image_path = os.path.join(images_dir, image_name)
if os.path.exists(image_path):
image_files.append(image_path)
# Get camera parameters
camera = cameras[image_data.camera_id]
# Convert quaternion to rotation matrix
R = image_data.qvec2rotmat()
t = image_data.tvec
# Create extrinsic matrix (world to camera)
extrinsic = np.eye(4)
extrinsic[:3, :3] = R
extrinsic[:3, 3] = t
extrinsics.append(extrinsic)
# Create intrinsic matrix
if camera.model == "PINHOLE":
fx, fy, cx, cy = camera.params
elif camera.model == "SIMPLE_PINHOLE":
f, cx, cy = camera.params
fx = fy = f
else:
# For other models, use basic pinhole approximation
fx = fy = camera.params[0] if len(camera.params) > 0 else 1000
cx = camera.width / 2
cy = camera.height / 2
intrinsic = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
intrinsics.append(intrinsic)
if not image_files:
raise typer.BadParameter("No valid images found in COLMAP data")
typer.echo(f"Found {len(image_files)} valid images with pose data")
return image_files, np.array(extrinsics), np.array(intrinsics)
except Exception as e:
raise typer.BadParameter(f"Failed to load COLMAP data: {e}")
class VideoHandler(InputHandler):
"""Video handler"""
@staticmethod
def process(video_path: str, output_dir: str, fps: float = 1.0) -> List[str]:
"""Process video, extract frames"""
InputHandler.validate_path(video_path, "Video file")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise typer.BadParameter(f"Cannot open video: {video_path}")
# Get video properties
video_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = total_frames / video_fps
# Calculate frame interval (ensure at least 1)
frame_interval = max(1, int(video_fps / fps))
actual_fps = video_fps / frame_interval
typer.echo(f"Video FPS: {video_fps:.2f}, Duration: {duration:.2f}s")
# Warn if requested FPS is higher than video FPS
if fps > video_fps:
typer.echo(
f"⚠️ Warning: Requested sampling FPS ({fps:.2f}) exceeds video FPS ({video_fps:.2f})", # noqa: E501
err=True,
)
typer.echo(
f"⚠️ Using maximum available FPS: {actual_fps:.2f} (extracting every frame)",
err=True,
)
typer.echo(f"Extracting frames at {actual_fps:.2f} FPS (every {frame_interval} frame(s))")
# Create output directory
frames_dir = os.path.join(output_dir, "input_images")
os.makedirs(frames_dir, exist_ok=True)
frame_count = 0
saved_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
frame_path = os.path.join(frames_dir, f"{saved_count:06d}.png")
cv2.imwrite(frame_path, frame)
saved_count += 1
frame_count += 1
cap.release()
typer.echo(f"Extracted {saved_count} frames to {frames_dir}")
# Get frame file list
frame_files = sorted(
[f for f in os.listdir(frames_dir) if f.endswith((".png", ".jpg", ".jpeg"))]
)
if not frame_files:
raise typer.BadParameter("No frames extracted from video")
return [os.path.join(frames_dir, f) for f in frame_files]
def parse_export_feat(export_feat_str: str) -> List[int]:
"""Parse export_feat parameter"""
if not export_feat_str:
return []
try:
return [int(x.strip()) for x in export_feat_str.split(",") if x.strip()]
except ValueError:
raise typer.BadParameter(
f"Invalid export_feat format: {export_feat_str}. "
"Use comma-separated integers like '0,1,2'"
)