depth-anything-3 / depth_anything_3 /utils /camera_trj_helpers.py
linhaotong
update
b9f87ab
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from einops import einsum, rearrange, reduce
try:
from scipy.spatial.transform import Rotation as R
except ImportError:
from depth_anything_3.utils.logger import logger
logger.warn("Dependency 'scipy' not found. Required for interpolating camera trajectory.")
from depth_anything_3.utils.geometry import as_homogeneous
@torch.no_grad()
def render_stabilization_path(poses, k_size=45):
"""Rendering stabilized camera path.
poses: [batch, 4, 4] or [batch, 3, 4],
return:
smooth path: [batch 4 4]"""
num_frames = poses.shape[0]
device = poses.device
dtype = poses.dtype
# Early exit for trivial cases
if num_frames <= 1:
return as_homogeneous(poses)
# Make k_size safe: positive odd and not larger than num_frames
# 1) Ensure odd
if k_size < 1:
k_size = 1
if k_size % 2 == 0:
k_size += 1
# 2) Cap to num_frames (keep odd)
max_odd = num_frames if (num_frames % 2 == 1) else (num_frames - 1)
if max_odd < 1:
max_odd = 1 # covers num_frames == 0 theoretically
k_size = min(k_size, max_odd)
# 3) enforce a minimum of 3 when possible (for better smoothing)
if num_frames >= 3 and k_size < 3:
k_size = 3
input_poses = []
for i in range(num_frames):
input_poses.append(
torch.cat([poses[i, :3, 0:1], poses[i, :3, 1:2], poses[i, :3, 3:4]], dim=-1)
)
input_poses = torch.stack(input_poses) # (num_frames, 3, 3)
# Prepare Gaussian kernel
gaussian_kernel = cv2.getGaussianKernel(ksize=k_size, sigma=-1).astype(np.float32).squeeze()
gaussian_kernel = torch.tensor(gaussian_kernel, dtype=dtype, device=device).view(1, 1, -1)
pad = k_size // 2
output_vectors = []
for idx in range(3): # For r1, r2, t
vec = (
input_poses[:, :, idx].T.unsqueeze(0).unsqueeze(0)
) # (1, 1, 3, num_frames) -> (1, 1, 3, num_frames)
# But actually, we want (batch=3, channel=1, width=num_frames)
# So:
vec = input_poses[:, :, idx].T.unsqueeze(1) # (3, 1, num_frames)
vec_padded = F.pad(vec, (pad, pad), mode="reflect")
filtered = F.conv1d(vec_padded, gaussian_kernel)
output_vectors.append(filtered.squeeze(1).T) # (num_frames, 3)
output_r1, output_r2, output_t = output_vectors # Each is (num_frames, 3)
# Normalize r1 and r2
output_r1 = output_r1 / output_r1.norm(dim=-1, keepdim=True)
output_r2 = output_r2 / output_r2.norm(dim=-1, keepdim=True)
output_poses = []
for i in range(num_frames):
output_r3 = torch.linalg.cross(output_r1[i], output_r2[i])
render_pose = torch.cat(
[
output_r1[i].unsqueeze(-1),
output_r2[i].unsqueeze(-1),
output_r3.unsqueeze(-1),
output_t[i].unsqueeze(-1),
],
dim=-1,
)
output_poses.append(render_pose[:3, :])
output_poses = as_homogeneous(torch.stack(output_poses, dim=0))
return output_poses
@torch.no_grad()
def render_wander_path(
cam2world: torch.Tensor,
intrinsic: torch.Tensor,
h: int,
w: int,
num_frames: int = 120,
max_disp: float = 48.0,
):
device, dtype = cam2world.device, cam2world.dtype
fx = intrinsic[0, 0] * w
r = max_disp / fx
th = torch.linspace(0, 2.0 * torch.pi, steps=num_frames, device=device, dtype=dtype)
x = r * torch.sin(th)
yz = r * torch.cos(th) / 3.0
T = torch.eye(4, device=device, dtype=dtype).unsqueeze(0).repeat(num_frames, 1, 1)
T[:, :3, 3] = torch.stack([x, yz, yz], dim=-1) * -1.0
c2ws = cam2world.unsqueeze(0) @ T
# Start at reference pose and end back at reference pose
c2ws = torch.cat([cam2world.unsqueeze(0), c2ws, cam2world.unsqueeze(0)], dim=0)
Ks = intrinsic.unsqueeze(0).repeat(c2ws.shape[0], 1, 1)
return c2ws, Ks
@torch.no_grad()
def render_dolly_zoom_path(
cam2world: torch.Tensor,
intrinsic: torch.Tensor,
h: int,
w: int,
num_frames: int = 120,
max_disp: float = 0.1,
D_focus: float = 10.0,
):
device, dtype = cam2world.device, cam2world.dtype
fx0, fy0 = intrinsic[0, 0] * w, intrinsic[1, 1] * h
t = torch.linspace(0.0, 2.0, steps=num_frames, device=device, dtype=dtype)
z = 0.5 * (1.0 - torch.cos(torch.pi * t)) * max_disp
T = torch.eye(4, device=device, dtype=dtype).unsqueeze(0).repeat(num_frames, 1, 1)
T[:, 2, 3] = -z
c2ws = cam2world.unsqueeze(0) @ T
Df = torch.as_tensor(D_focus, device=device, dtype=dtype)
scale = (Df / (Df + z)).clamp(min=1e-6)
Ks = intrinsic.unsqueeze(0).repeat(num_frames, 1, 1)
Ks[:, 0, 0] = (fx0 * scale) / w
Ks[:, 1, 1] = (fy0 * scale) / h
return c2ws, Ks
@torch.no_grad()
def interpolate_intrinsics(
initial: torch.Tensor, # "*#batch 3 3"
final: torch.Tensor, # "*#batch 3 3"
t: torch.Tensor, # " time_step"
) -> torch.Tensor: # "*batch time_step 3 3"
initial = rearrange(initial, "... i j -> ... () i j")
final = rearrange(final, "... i j -> ... () i j")
t = rearrange(t, "t -> t () ()")
return initial + (final - initial) * t
def intersect_rays(
a_origins: torch.Tensor, # "*#batch dim"
a_directions: torch.Tensor, # "*#batch dim"
b_origins: torch.Tensor, # "*#batch dim"
b_directions: torch.Tensor, # "*#batch dim"
) -> torch.Tensor: # "*batch dim"
"""Compute the least-squares intersection of rays. Uses the math from here:
https://math.stackexchange.com/a/1762491/286022
"""
# Broadcast and stack the tensors.
a_origins, a_directions, b_origins, b_directions = torch.broadcast_tensors(
a_origins, a_directions, b_origins, b_directions
)
origins = torch.stack((a_origins, b_origins), dim=-2)
directions = torch.stack((a_directions, b_directions), dim=-2)
# Compute n_i * n_i^T - eye(3) from the equation.
n = einsum(directions, directions, "... n i, ... n j -> ... n i j")
n = n - torch.eye(3, dtype=origins.dtype, device=origins.device)
# Compute the left-hand side of the equation.
lhs = reduce(n, "... n i j -> ... i j", "sum")
# Compute the right-hand side of the equation.
rhs = einsum(n, origins, "... n i j, ... n j -> ... n i")
rhs = reduce(rhs, "... n i -> ... i", "sum")
# Left-matrix-multiply both sides by the inverse of lhs to find p.
return torch.linalg.lstsq(lhs, rhs).solution
def normalize(a: torch.Tensor) -> torch.Tensor: # "*#batch dim" -> "*#batch dim"
return a / a.norm(dim=-1, keepdim=True)
def generate_coordinate_frame(
y: torch.Tensor, # "*#batch 3"
z: torch.Tensor, # "*#batch 3"
) -> torch.Tensor: # "*batch 3 3"
"""Generate a coordinate frame given perpendicular, unit-length Y and Z vectors."""
y, z = torch.broadcast_tensors(y, z)
return torch.stack([y.cross(z, dim=-1), y, z], dim=-1)
def generate_rotation_coordinate_frame(
a: torch.Tensor, # "*#batch 3"
b: torch.Tensor, # "*#batch 3"
eps: float = 1e-4,
) -> torch.Tensor: # "*batch 3 3"
"""Generate a coordinate frame where the Y direction is normal to the plane defined
by unit vectors a and b. The other axes are arbitrary."""
device = a.device
# Replace every entry in b that's parallel to the corresponding entry in a with an
# arbitrary vector.
b = b.detach().clone()
parallel = (einsum(a, b, "... i, ... i -> ...").abs() - 1).abs() < eps
b[parallel] = torch.tensor([0, 0, 1], dtype=b.dtype, device=device)
parallel = (einsum(a, b, "... i, ... i -> ...").abs() - 1).abs() < eps
b[parallel] = torch.tensor([0, 1, 0], dtype=b.dtype, device=device)
# Generate the coordinate frame. The initial cross product defines the plane.
return generate_coordinate_frame(normalize(torch.linalg.cross(a, b)), a)
def matrix_to_euler(
rotations: torch.Tensor, # "*batch 3 3"
pattern: str,
) -> torch.Tensor: # "*batch 3"
*batch, _, _ = rotations.shape
rotations = rotations.reshape(-1, 3, 3)
angles_np = R.from_matrix(rotations.detach().cpu().numpy()).as_euler(pattern)
rotations = torch.tensor(angles_np, dtype=rotations.dtype, device=rotations.device)
return rotations.reshape(*batch, 3)
def euler_to_matrix(
rotations: torch.Tensor, # "*batch 3"
pattern: str,
) -> torch.Tensor: # "*batch 3 3"
*batch, _ = rotations.shape
rotations = rotations.reshape(-1, 3)
matrix_np = R.from_euler(pattern, rotations.detach().cpu().numpy()).as_matrix()
rotations = torch.tensor(matrix_np, dtype=rotations.dtype, device=rotations.device)
return rotations.reshape(*batch, 3, 3)
def extrinsics_to_pivot_parameters(
extrinsics: torch.Tensor, # "*#batch 4 4"
pivot_coordinate_frame: torch.Tensor, # "*#batch 3 3"
pivot_point: torch.Tensor, # "*#batch 3"
) -> torch.Tensor: # "*batch 5"
"""Convert the extrinsics to a representation with 5 degrees of freedom:
1. Distance from pivot point in the "X" (look cross pivot axis) direction.
2. Distance from pivot point in the "Y" (pivot axis) direction.
3. Distance from pivot point in the Z (look) direction
4. Angle in plane
5. Twist (rotation not in plane)
"""
# The pivot coordinate frame's Z axis is normal to the plane.
pivot_axis = pivot_coordinate_frame[..., :, 1]
# Compute the translation elements of the pivot parametrization.
translation_frame = generate_coordinate_frame(pivot_axis, extrinsics[..., :3, 2])
origin = extrinsics[..., :3, 3]
delta = pivot_point - origin
translation = einsum(translation_frame, delta, "... i j, ... i -> ... j")
# Add the rotation elements of the pivot parametrization.
inverted = pivot_coordinate_frame.inverse() @ extrinsics[..., :3, :3]
y, _, z = matrix_to_euler(inverted, "YXZ").unbind(dim=-1)
return torch.cat([translation, y[..., None], z[..., None]], dim=-1)
def pivot_parameters_to_extrinsics(
parameters: torch.Tensor, # "*#batch 5"
pivot_coordinate_frame: torch.Tensor, # "*#batch 3 3"
pivot_point: torch.Tensor, # "*#batch 3"
) -> torch.Tensor: # "*batch 4 4"
translation, y, z = parameters.split((3, 1, 1), dim=-1)
euler = torch.cat((y, torch.zeros_like(y), z), dim=-1)
rotation = pivot_coordinate_frame @ euler_to_matrix(euler, "YXZ")
# The pivot coordinate frame's Z axis is normal to the plane.
pivot_axis = pivot_coordinate_frame[..., :, 1]
translation_frame = generate_coordinate_frame(pivot_axis, rotation[..., :3, 2])
delta = einsum(translation_frame, translation, "... i j, ... j -> ... i")
origin = pivot_point - delta
*batch, _ = origin.shape
extrinsics = torch.eye(4, dtype=parameters.dtype, device=parameters.device)
extrinsics = extrinsics.broadcast_to((*batch, 4, 4)).clone()
extrinsics[..., 3, 3] = 1
extrinsics[..., :3, :3] = rotation
extrinsics[..., :3, 3] = origin
return extrinsics
def interpolate_circular(
a: torch.Tensor, # "*#batch"
b: torch.Tensor, # "*#batch"
t: torch.Tensor, # "*#batch"
) -> torch.Tensor: # " *batch"
a, b, t = torch.broadcast_tensors(a, b, t)
tau = 2 * torch.pi
a = a % tau
b = b % tau
# Consider piecewise edge cases.
d = (b - a).abs()
a_left = a - tau
d_left = (b - a_left).abs()
a_right = a + tau
d_right = (b - a_right).abs()
use_d = (d < d_left) & (d < d_right)
use_d_left = (d_left < d_right) & (~use_d)
use_d_right = (~use_d) & (~use_d_left)
result = a + (b - a) * t
result[use_d_left] = (a_left + (b - a_left) * t)[use_d_left]
result[use_d_right] = (a_right + (b - a_right) * t)[use_d_right]
return result
def interpolate_pivot_parameters(
initial: torch.Tensor, # "*#batch 5"
final: torch.Tensor, # "*#batch 5"
t: torch.Tensor, # " time_step"
) -> torch.Tensor: # "*batch time_step 5"
initial = rearrange(initial, "... d -> ... () d")
final = rearrange(final, "... d -> ... () d")
t = rearrange(t, "t -> t ()")
ti, ri = initial.split((3, 2), dim=-1)
tf, rf = final.split((3, 2), dim=-1)
t_lerp = ti + (tf - ti) * t
r_lerp = interpolate_circular(ri, rf, t)
return torch.cat((t_lerp, r_lerp), dim=-1)
@torch.no_grad()
def interpolate_extrinsics(
initial: torch.Tensor, # "*#batch 4 4"
final: torch.Tensor, # "*#batch 4 4"
t: torch.Tensor, # " time_step"
eps: float = 1e-4,
) -> torch.Tensor: # "*batch time_step 4 4"
"""Interpolate extrinsics by rotating around their "focus point," which is the
least-squares intersection between the look vectors of the initial and final
extrinsics.
"""
initial = initial.type(torch.float64)
final = final.type(torch.float64)
t = t.type(torch.float64)
# Based on the dot product between the look vectors, pick from one of two cases:
# 1. Look vectors are parallel: interpolate about their origins' midpoint.
# 3. Look vectors aren't parallel: interpolate about their focus point.
initial_look = initial[..., :3, 2]
final_look = final[..., :3, 2]
dot_products = einsum(initial_look, final_look, "... i, ... i -> ...")
parallel_mask = (dot_products.abs() - 1).abs() < eps
# Pick focus points.
initial_origin = initial[..., :3, 3]
final_origin = final[..., :3, 3]
pivot_point = 0.5 * (initial_origin + final_origin)
pivot_point[~parallel_mask] = intersect_rays(
initial_origin[~parallel_mask],
initial_look[~parallel_mask],
final_origin[~parallel_mask],
final_look[~parallel_mask],
)
# Convert to pivot parameters.
pivot_frame = generate_rotation_coordinate_frame(initial_look, final_look, eps=eps)
initial_params = extrinsics_to_pivot_parameters(initial, pivot_frame, pivot_point)
final_params = extrinsics_to_pivot_parameters(final, pivot_frame, pivot_point)
# Interpolate the pivot parameters.
interpolated_params = interpolate_pivot_parameters(initial_params, final_params, t)
# Convert back.
return pivot_parameters_to_extrinsics(
interpolated_params.type(torch.float32),
rearrange(pivot_frame, "... i j -> ... () i j").type(torch.float32),
rearrange(pivot_point, "... xyz -> ... () xyz").type(torch.float32),
)
@torch.no_grad()
def generate_wobble_transformation(
radius: torch.Tensor, # "*#batch"
t: torch.Tensor, # " time_step"
num_rotations: int = 1,
scale_radius_with_t: bool = True,
) -> torch.Tensor: # "*batch time_step 4 4"]:
# Generate a translation in the image plane.
tf = torch.eye(4, dtype=torch.float32, device=t.device)
tf = tf.broadcast_to((*radius.shape, t.shape[0], 4, 4)).clone()
radius = radius[..., None]
if scale_radius_with_t:
radius = radius * t
tf[..., 0, 3] = torch.sin(2 * torch.pi * num_rotations * t) * radius
tf[..., 1, 3] = -torch.cos(2 * torch.pi * num_rotations * t) * radius
return tf
@torch.no_grad()
def render_wobble_inter_path(
cam2world: torch.Tensor, intr_normed: torch.Tensor, inter_len: int, n_skip: int = 3
):
"""
cam2world: [batch, 4, 4],
intr_normed: [batch, 3, 3]
"""
frame_per_round = n_skip * inter_len
num_rotations = 1
t = torch.linspace(0, 1, frame_per_round, dtype=torch.float32, device=cam2world.device)
# t = (torch.cos(torch.pi * (t + 1)) + 1) / 2
tgt_c2w_b = []
tgt_intr_b = []
for b_idx in range(cam2world.shape[0]):
tgt_c2w = []
tgt_intr = []
for cur_idx in range(0, cam2world.shape[1] - n_skip, n_skip):
origin_a = cam2world[b_idx, cur_idx, :3, 3]
origin_b = cam2world[b_idx, cur_idx + n_skip, :3, 3]
delta = (origin_a - origin_b).norm(dim=-1)
if cur_idx == 0:
delta_prev = delta
else:
delta = (delta_prev + delta) / 2
delta_prev = delta
tf = generate_wobble_transformation(
radius=delta * 0.5,
t=t,
num_rotations=num_rotations,
scale_radius_with_t=False,
)
cur_extrs = (
interpolate_extrinsics(
cam2world[b_idx, cur_idx],
cam2world[b_idx, cur_idx + n_skip],
t,
)
@ tf
)
tgt_c2w.append(cur_extrs[(0 if cur_idx == 0 else 1) :])
tgt_intr.append(
interpolate_intrinsics(
intr_normed[b_idx, cur_idx],
intr_normed[b_idx, cur_idx + n_skip],
t,
)[(0 if cur_idx == 0 else 1) :]
)
tgt_c2w_b.append(torch.cat(tgt_c2w))
tgt_intr_b.append(torch.cat(tgt_intr))
tgt_c2w = torch.stack(tgt_c2w_b) # b v 4 4
tgt_intr = torch.stack(tgt_intr_b) # b v 3 3
return tgt_c2w, tgt_intr