# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unified Inference Service Provides unified interface for local and remote inference """ from typing import Any, Dict, List, Optional, Union import numpy as np import requests import typer from ..api import DepthAnything3 class InferenceService: """Unified inference service class""" def __init__(self, model_dir: str, device: str = "cuda"): self.model_dir = model_dir self.device = device self.model = None def load_model(self): """Load model""" if self.model is None: typer.echo(f"Loading model from {self.model_dir}...") self.model = DepthAnything3.from_pretrained(self.model_dir).to(self.device) return self.model def run_local_inference( self, image_paths: List[str], export_dir: str, export_format: str = "mini_npz-glb", process_res: int = 504, process_res_method: str = "upper_bound_resize", export_feat_layers: List[int] = None, extrinsics: Optional[np.ndarray] = None, intrinsics: Optional[np.ndarray] = None, align_to_input_ext_scale: bool = True, conf_thresh_percentile: float = 40.0, num_max_points: int = 1_000_000, show_cameras: bool = True, feat_vis_fps: int = 15, ) -> Any: """Run local inference""" if export_feat_layers is None: export_feat_layers = [] model = self.load_model() # Prepare inference parameters inference_kwargs = { "image": image_paths, "export_dir": export_dir, "export_format": export_format, "process_res": process_res, "process_res_method": process_res_method, "export_feat_layers": export_feat_layers, "align_to_input_ext_scale": align_to_input_ext_scale, "conf_thresh_percentile": conf_thresh_percentile, "num_max_points": num_max_points, "show_cameras": show_cameras, "feat_vis_fps": feat_vis_fps, } # Add pose data (if exists) if extrinsics is not None: inference_kwargs["extrinsics"] = extrinsics if intrinsics is not None: inference_kwargs["intrinsics"] = intrinsics # Run inference typer.echo(f"Running inference on {len(image_paths)} images...") prediction = model.inference(**inference_kwargs) typer.echo(f"Results saved to {export_dir}") typer.echo(f"Export format: {export_format}") return prediction def run_backend_inference( self, image_paths: List[str], export_dir: str, backend_url: str, export_format: str = "mini_npz-glb", process_res: int = 504, process_res_method: str = "upper_bound_resize", export_feat_layers: List[int] = None, extrinsics: Optional[np.ndarray] = None, intrinsics: Optional[np.ndarray] = None, align_to_input_ext_scale: bool = True, conf_thresh_percentile: float = 40.0, num_max_points: int = 1_000_000, show_cameras: bool = True, feat_vis_fps: int = 15, ) -> Dict[str, Any]: """Run backend inference""" if export_feat_layers is None: export_feat_layers = [] # Check backend status if not self._check_backend_status(backend_url): raise typer.BadParameter(f"Backend service is not running at {backend_url}") # Prepare payload payload = { "image_paths": image_paths, "export_dir": export_dir, "export_format": export_format, "process_res": process_res, "process_res_method": process_res_method, "export_feat_layers": export_feat_layers, "align_to_input_ext_scale": align_to_input_ext_scale, "conf_thresh_percentile": conf_thresh_percentile, "num_max_points": num_max_points, "show_cameras": show_cameras, "feat_vis_fps": feat_vis_fps, } # Add pose data (if exists) if extrinsics is not None: payload["extrinsics"] = [ext.astype(np.float64).tolist() for ext in extrinsics] if intrinsics is not None: payload["intrinsics"] = [intr.astype(np.float64).tolist() for intr in intrinsics] # Submit task typer.echo("Submitting inference task to backend...") try: response = requests.post(f"{backend_url}/inference", json=payload, timeout=30) response.raise_for_status() result = response.json() if result["success"]: task_id = result["task_id"] typer.echo("Task submitted successfully!") typer.echo(f"Task ID: {task_id}") typer.echo(f"Results will be saved to: {export_dir}") typer.echo(f"Check backend logs for progress updates with task ID: {task_id}") return result else: raise typer.BadParameter( f"Backend inference submission failed: {result['message']}" ) except requests.exceptions.RequestException as e: raise typer.BadParameter(f"Backend inference submission failed: {e}") def _check_backend_status(self, backend_url: str) -> bool: """Check backend status""" try: response = requests.get(f"{backend_url}/status", timeout=5) return response.status_code == 200 except Exception: return False def run_inference( image_paths: List[str], export_dir: str, model_dir: str, device: str = "cuda", backend_url: Optional[str] = None, export_format: str = "mini_npz-glb", process_res: int = 504, process_res_method: str = "upper_bound_resize", export_feat_layers: List[int] = None, extrinsics: Optional[np.ndarray] = None, intrinsics: Optional[np.ndarray] = None, align_to_input_ext_scale: bool = True, conf_thresh_percentile: float = 40.0, num_max_points: int = 1_000_000, show_cameras: bool = True, feat_vis_fps: int = 15, ) -> Union[Any, Dict[str, Any]]: """Unified inference interface""" service = InferenceService(model_dir, device) if backend_url: return service.run_backend_inference( image_paths=image_paths, export_dir=export_dir, backend_url=backend_url, export_format=export_format, process_res=process_res, process_res_method=process_res_method, export_feat_layers=export_feat_layers, extrinsics=extrinsics, intrinsics=intrinsics, align_to_input_ext_scale=align_to_input_ext_scale, conf_thresh_percentile=conf_thresh_percentile, num_max_points=num_max_points, show_cameras=show_cameras, feat_vis_fps=feat_vis_fps, ) else: return service.run_local_inference( image_paths=image_paths, export_dir=export_dir, export_format=export_format, process_res=process_res, process_res_method=process_res_method, export_feat_layers=export_feat_layers, extrinsics=extrinsics, intrinsics=intrinsics, align_to_input_ext_scale=align_to_input_ext_scale, conf_thresh_percentile=conf_thresh_percentile, num_max_points=num_max_points, show_cameras=show_cameras, feat_vis_fps=feat_vis_fps, )