Spaces:
Running
on
L40S
Running
on
L40S
Commit
·
f0fcc66
1
Parent(s):
3bb963b
init
Browse files- app.py +328 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel
|
| 4 |
+
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 5 |
+
from transformers import T5EncoderModel
|
| 6 |
+
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 7 |
+
import gc
|
| 8 |
+
import random
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import os
|
| 11 |
+
import time
|
| 12 |
+
import spaces
|
| 13 |
+
|
| 14 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
print(f"Using device: {DEVICE}")
|
| 16 |
+
|
| 17 |
+
DEFAULT_HEIGHT = 1024
|
| 18 |
+
DEFAULT_WIDTH = 1024
|
| 19 |
+
DEFAULT_GUIDANCE_SCALE = 3.5
|
| 20 |
+
DEFAULT_NUM_INFERENCE_STEPS = 15
|
| 21 |
+
DEFAULT_MAX_SEQUENCE_LENGTH = 512
|
| 22 |
+
GENERATION_SEED = 0 # could use a random number generator to set this, for more variety
|
| 23 |
+
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")
|
| 24 |
+
|
| 25 |
+
def clear_gpu_memory(*args):
|
| 26 |
+
allocated_before = torch.cuda.memory_allocated(0) / 1024**3 if DEVICE == "cuda" else 0
|
| 27 |
+
reserved_before = torch.cuda.memory_reserved(0) / 1024**3 if DEVICE == "cuda" else 0
|
| 28 |
+
print(f"Before clearing: Allocated={allocated_before:.2f} GB, Reserved={reserved_before:.2f} GB")
|
| 29 |
+
|
| 30 |
+
deleted_types = []
|
| 31 |
+
for arg in args:
|
| 32 |
+
if arg is not None:
|
| 33 |
+
deleted_types.append(str(type(arg)))
|
| 34 |
+
del arg
|
| 35 |
+
|
| 36 |
+
if deleted_types:
|
| 37 |
+
print(f"Deleted objects of types: {', '.join(deleted_types)}")
|
| 38 |
+
else:
|
| 39 |
+
print("No objects passed to clear_gpu_memory.")
|
| 40 |
+
|
| 41 |
+
gc.collect()
|
| 42 |
+
if DEVICE == "cuda":
|
| 43 |
+
torch.cuda.empty_cache()
|
| 44 |
+
|
| 45 |
+
allocated_after = torch.cuda.memory_allocated(0) / 1024**3 if DEVICE == "cuda" else 0
|
| 46 |
+
reserved_after = torch.cuda.memory_reserved(0) / 1024**3 if DEVICE == "cuda" else 0
|
| 47 |
+
print(f"After clearing: Allocated={allocated_after:.2f} GB, Reserved={reserved_after:.2f} GB")
|
| 48 |
+
print("-" * 20)
|
| 49 |
+
|
| 50 |
+
CACHED_PIPES = {}
|
| 51 |
+
def load_bf16_pipeline():
|
| 52 |
+
"""Loads the original FLUX.1-dev pipeline in BF16 precision."""
|
| 53 |
+
print("Loading BF16 pipeline...")
|
| 54 |
+
MODEL_ID = "black-forest-labs/FLUX.1-dev"
|
| 55 |
+
if MODEL_ID in CACHED_PIPES:
|
| 56 |
+
return CACHED_PIPES[MODEL_ID]
|
| 57 |
+
start_time = time.time()
|
| 58 |
+
try:
|
| 59 |
+
pipe = FluxPipeline.from_pretrained(
|
| 60 |
+
MODEL_ID,
|
| 61 |
+
torch_dtype=torch.bfloat16,
|
| 62 |
+
token=HF_TOKEN
|
| 63 |
+
)
|
| 64 |
+
pipe.to(DEVICE)
|
| 65 |
+
# pipe.enable_model_cpu_offload()
|
| 66 |
+
end_time = time.time()
|
| 67 |
+
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 68 |
+
print(f"BF16 Pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
|
| 69 |
+
# CACHED_PIPES[MODEL_ID] = pipe
|
| 70 |
+
return pipe
|
| 71 |
+
except Exception as e:
|
| 72 |
+
print(f"Error loading BF16 pipeline: {e}")
|
| 73 |
+
raise # Re-raise exception to be caught in generate_images
|
| 74 |
+
|
| 75 |
+
def load_bnb_8bit_pipeline():
|
| 76 |
+
"""Loads the FLUX.1-dev pipeline with 8-bit quantized components."""
|
| 77 |
+
print("Loading 8-bit BNB pipeline...")
|
| 78 |
+
MODEL_ID = "derekl35/FLUX.1-dev-bnb-8bit"
|
| 79 |
+
if MODEL_ID in CACHED_PIPES:
|
| 80 |
+
return CACHED_PIPES[MODEL_ID]
|
| 81 |
+
start_time = time.time()
|
| 82 |
+
try:
|
| 83 |
+
pipe = FluxPipeline.from_pretrained(
|
| 84 |
+
MODEL_ID,
|
| 85 |
+
torch_dtype=torch.bfloat16
|
| 86 |
+
)
|
| 87 |
+
pipe.to(DEVICE)
|
| 88 |
+
# pipe.enable_model_cpu_offload()
|
| 89 |
+
end_time = time.time()
|
| 90 |
+
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 91 |
+
print(f"8-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
|
| 92 |
+
CACHED_PIPES[MODEL_ID] = pipe
|
| 93 |
+
return pipe
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print(f"Error loading 8-bit BNB pipeline: {e}")
|
| 96 |
+
raise
|
| 97 |
+
|
| 98 |
+
def load_bnb_4bit_pipeline():
|
| 99 |
+
"""Loads the FLUX.1-dev pipeline with 4-bit quantized components."""
|
| 100 |
+
print("Loading 4-bit BNB pipeline...")
|
| 101 |
+
MODEL_ID = "derekl35/FLUX.1-dev-nf4"
|
| 102 |
+
if MODEL_ID in CACHED_PIPES:
|
| 103 |
+
return CACHED_PIPES[MODEL_ID]
|
| 104 |
+
start_time = time.time()
|
| 105 |
+
try:
|
| 106 |
+
pipe = FluxPipeline.from_pretrained(
|
| 107 |
+
MODEL_ID,
|
| 108 |
+
torch_dtype=torch.bfloat16
|
| 109 |
+
)
|
| 110 |
+
pipe.to(DEVICE)
|
| 111 |
+
# pipe.enable_model_cpu_offload()
|
| 112 |
+
end_time = time.time()
|
| 113 |
+
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 114 |
+
print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
|
| 115 |
+
CACHED_PIPES[MODEL_ID] = pipe
|
| 116 |
+
return pipe
|
| 117 |
+
except Exception as e:
|
| 118 |
+
print(f"4-bit BNB pipeline: {e}")
|
| 119 |
+
raise
|
| 120 |
+
|
| 121 |
+
@spaces.GPU(duration=240)
|
| 122 |
+
def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)):
|
| 123 |
+
"""Loads original and selected quantized model, generates one image each, clears memory, shuffles results."""
|
| 124 |
+
if not prompt:
|
| 125 |
+
return None, {}, gr.update(value="Please enter a prompt.", interactive=False), gr.update(choices=[], value=None)
|
| 126 |
+
|
| 127 |
+
if not quantization_choice:
|
| 128 |
+
# Return updates for all outputs to clear them or show warning
|
| 129 |
+
return None, {}, gr.update(value="Please select a quantization method.", interactive=False), gr.update(choices=[], value=None)
|
| 130 |
+
|
| 131 |
+
# Determine which quantized model to load
|
| 132 |
+
if quantization_choice == "8-bit":
|
| 133 |
+
quantized_load_func = load_bnb_8bit_pipeline
|
| 134 |
+
quantized_label = "Quantized (8-bit)"
|
| 135 |
+
elif quantization_choice == "4-bit":
|
| 136 |
+
quantized_load_func = load_bnb_4bit_pipeline
|
| 137 |
+
quantized_label = "Quantized (4-bit)"
|
| 138 |
+
else:
|
| 139 |
+
# Should not happen with Radio choices, but good practice
|
| 140 |
+
return None, {}, gr.update(value="Invalid quantization choice.", interactive=False), gr.update(choices=[], value=None)
|
| 141 |
+
|
| 142 |
+
model_configs = [
|
| 143 |
+
("Original", load_bf16_pipeline),
|
| 144 |
+
(quantized_label, quantized_load_func), # Use the specific label here
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
results = []
|
| 148 |
+
pipe_kwargs = {
|
| 149 |
+
"prompt": prompt,
|
| 150 |
+
"height": DEFAULT_HEIGHT,
|
| 151 |
+
"width": DEFAULT_WIDTH,
|
| 152 |
+
"guidance_scale": DEFAULT_GUIDANCE_SCALE,
|
| 153 |
+
"num_inference_steps": DEFAULT_NUM_INFERENCE_STEPS,
|
| 154 |
+
"max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH,
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
current_pipe = None # Keep track of the current pipe for cleanup
|
| 158 |
+
|
| 159 |
+
for i, (label, load_func) in enumerate(model_configs):
|
| 160 |
+
progress(i / len(model_configs), desc=f"Loading {label} model...")
|
| 161 |
+
print(f"\n--- Loading {label} Model ---")
|
| 162 |
+
load_start_time = time.time()
|
| 163 |
+
try:
|
| 164 |
+
# Ensure previous pipe is cleared *before* loading the next
|
| 165 |
+
# if current_pipe:
|
| 166 |
+
# print(f"--- Clearing memory before loading {label} Model ---")
|
| 167 |
+
# clear_gpu_memory(current_pipe)
|
| 168 |
+
# current_pipe = None
|
| 169 |
+
|
| 170 |
+
current_pipe = load_func()
|
| 171 |
+
load_end_time = time.time()
|
| 172 |
+
print(f"{label} model loaded in {load_end_time - load_start_time:.2f} seconds.")
|
| 173 |
+
|
| 174 |
+
progress((i + 0.5) / len(model_configs), desc=f"Generating with {label} model...")
|
| 175 |
+
print(f"--- Generating with {label} Model ---")
|
| 176 |
+
gen_start_time = time.time()
|
| 177 |
+
image_list = current_pipe(**pipe_kwargs, generator=torch.manual_seed(GENERATION_SEED)).images
|
| 178 |
+
image = image_list[0]
|
| 179 |
+
gen_end_time = time.time()
|
| 180 |
+
results.append({"label": label, "image": image})
|
| 181 |
+
print(f"--- Finished Generation with {label} Model in {gen_end_time - gen_start_time:.2f} seconds ---")
|
| 182 |
+
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
|
| 183 |
+
print(f"Memory reserved: {mem_reserved:.2f} GB")
|
| 184 |
+
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"Error during {label} model processing: {e}")
|
| 187 |
+
# Attempt cleanup
|
| 188 |
+
if current_pipe:
|
| 189 |
+
print(f"--- Clearing memory after error with {label} Model ---")
|
| 190 |
+
clear_gpu_memory(current_pipe)
|
| 191 |
+
current_pipe = None
|
| 192 |
+
# Return error state to Gradio - update all outputs
|
| 193 |
+
return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False), gr.update(choices=[], value=None)
|
| 194 |
+
|
| 195 |
+
# No finally block needed here, cleanup happens before next load or after loop
|
| 196 |
+
|
| 197 |
+
# Final cleanup after the loop finishes successfully
|
| 198 |
+
# if current_pipe:
|
| 199 |
+
# print(f"--- Clearing memory after last model ({label}) ---")
|
| 200 |
+
# clear_gpu_memory(current_pipe)
|
| 201 |
+
# current_pipe = None
|
| 202 |
+
|
| 203 |
+
if len(results) != len(model_configs):
|
| 204 |
+
print("Generation did not complete for all models.")
|
| 205 |
+
# Update all outputs
|
| 206 |
+
return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False), gr.update(choices=[], value=None)
|
| 207 |
+
|
| 208 |
+
# Shuffle the results for display
|
| 209 |
+
shuffled_results = results.copy()
|
| 210 |
+
random.shuffle(shuffled_results)
|
| 211 |
+
|
| 212 |
+
# Create the gallery data: [(image, caption), (image, caption)]
|
| 213 |
+
shuffled_data_for_gallery = [(res["image"], f"Image {i+1}") for i, res in enumerate(shuffled_results)]
|
| 214 |
+
|
| 215 |
+
# Create the mapping: display_index -> correct_label (e.g., {0: 'Original', 1: 'Quantized (8-bit)'})
|
| 216 |
+
correct_mapping = {i: res["label"] for i, res in enumerate(shuffled_results)}
|
| 217 |
+
print("Correct mapping (hidden):", correct_mapping)
|
| 218 |
+
|
| 219 |
+
guess_radio_update = gr.update(choices=["Image 1", "Image 2"], value=None, interactive=True)
|
| 220 |
+
|
| 221 |
+
# Return shuffled images, the correct mapping state, status message, and update the guess radio
|
| 222 |
+
return shuffled_data_for_gallery, correct_mapping, gr.update(value="Generation complete! Make your guess.", interactive=False), guess_radio_update
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# --- Guess Verification Function ---
|
| 226 |
+
def check_guess(user_guess, correct_mapping_state):
|
| 227 |
+
"""Compares the user's guess with the correct mapping stored in the state."""
|
| 228 |
+
|
| 229 |
+
if not isinstance(correct_mapping_state, dict) or not correct_mapping_state:
|
| 230 |
+
return "Please generate images first (state is empty or invalid)."
|
| 231 |
+
|
| 232 |
+
if user_guess is None:
|
| 233 |
+
return "Please select which image you think is quantized."
|
| 234 |
+
|
| 235 |
+
# Find which display index (0 or 1) corresponds to the quantized image
|
| 236 |
+
quantized_image_index = -1
|
| 237 |
+
quantized_label_actual = ""
|
| 238 |
+
for index, label in correct_mapping_state.items():
|
| 239 |
+
if "Quantized" in label: # Check if the label indicates quantization
|
| 240 |
+
quantized_image_index = index
|
| 241 |
+
quantized_label_actual = label # Store the full label e.g. "Quantized (8-bit)"
|
| 242 |
+
break
|
| 243 |
+
|
| 244 |
+
if quantized_image_index == -1:
|
| 245 |
+
# This shouldn't happen if generation was successful
|
| 246 |
+
return "Error: Could not find the quantized image in the mapping data."
|
| 247 |
+
|
| 248 |
+
# Determine what the user *should* have selected based on the index
|
| 249 |
+
correct_guess_label = f"Image {quantized_image_index + 1}" # "Image 1" or "Image 2"
|
| 250 |
+
|
| 251 |
+
if user_guess == correct_guess_label:
|
| 252 |
+
feedback = f"Correct! {correct_guess_label} used the {quantized_label_actual} model."
|
| 253 |
+
else:
|
| 254 |
+
feedback = f"Incorrect. The quantized image ({quantized_label_actual}) was {correct_guess_label}."
|
| 255 |
+
|
| 256 |
+
return feedback
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo:
|
| 260 |
+
gr.Markdown("# FLUX Model Quantization Challenge")
|
| 261 |
+
gr.Markdown(
|
| 262 |
+
"Compare the original FLUX.1-dev (BF16) model against a quantized version (4-bit or 8-bit). "
|
| 263 |
+
"Enter a prompt, choose the quantization method, and generate two images. "
|
| 264 |
+
"The images will be shuffled. Can you guess which one used quantization?"
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
with gr.Row():
|
| 268 |
+
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="e.g., A photorealistic portrait of an astronaut on Mars", scale=3)
|
| 269 |
+
quantization_choice_radio = gr.Radio(
|
| 270 |
+
choices=["8-bit", "4-bit"],
|
| 271 |
+
label="Select Quantization",
|
| 272 |
+
value="8-bit", # Default choice
|
| 273 |
+
scale=1
|
| 274 |
+
)
|
| 275 |
+
generate_button = gr.Button("Generate & Compare", variant="primary", scale=1)
|
| 276 |
+
|
| 277 |
+
output_gallery = gr.Gallery(
|
| 278 |
+
label="Generated Images (Original vs. Quantized)",
|
| 279 |
+
columns=2,
|
| 280 |
+
height=512,
|
| 281 |
+
object_fit="contain",
|
| 282 |
+
allow_preview=True,
|
| 283 |
+
show_label=True, # Shows "Image 1", "Image 2" captions we provide
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
gr.Markdown("### Which image used the selected quantization method?")
|
| 287 |
+
with gr.Row():
|
| 288 |
+
# Centered guess radio and submit button
|
| 289 |
+
with gr.Column(scale=1): # Dummy column for spacing
|
| 290 |
+
pass
|
| 291 |
+
with gr.Column(scale=2): # Column for the radio button
|
| 292 |
+
guess_radio = gr.Radio(
|
| 293 |
+
choices=[],
|
| 294 |
+
label="Your Guess",
|
| 295 |
+
info="Select the image you believe was generated with the quantized model.",
|
| 296 |
+
interactive=False # Disabled until images are generated
|
| 297 |
+
)
|
| 298 |
+
with gr.Column(scale=1): # Column for the button
|
| 299 |
+
submit_guess_button = gr.Button("Submit Guess")
|
| 300 |
+
with gr.Column(scale=1): # Dummy column for spacing
|
| 301 |
+
pass
|
| 302 |
+
|
| 303 |
+
feedback_box = gr.Textbox(label="Feedback", interactive=False, lines=1)
|
| 304 |
+
|
| 305 |
+
# Hidden state to store the correct mapping after shuffling
|
| 306 |
+
# e.g., {0: 'Original', 1: 'Quantized (8-bit)'} or {0: 'Quantized (4-bit)', 1: 'Original'}
|
| 307 |
+
correct_mapping_state = gr.State({})
|
| 308 |
+
|
| 309 |
+
generate_button.click(
|
| 310 |
+
fn=generate_images,
|
| 311 |
+
inputs=[prompt_input, quantization_choice_radio],
|
| 312 |
+
outputs=[output_gallery, correct_mapping_state, feedback_box, guess_radio]
|
| 313 |
+
).then(
|
| 314 |
+
lambda: "", # Clear feedback box on new generation
|
| 315 |
+
outputs=[feedback_box]
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
submit_guess_button.click(
|
| 320 |
+
fn=check_guess,
|
| 321 |
+
inputs=[guess_radio, correct_mapping_state], # Pass the selected guess and the state
|
| 322 |
+
outputs=[feedback_box]
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
if __name__ == "__main__":
|
| 326 |
+
# queue()
|
| 327 |
+
# demo.queue().launch() # Set share=True to create public link if needed
|
| 328 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate
|
| 2 |
+
diffusers
|
| 3 |
+
invisible_watermark
|
| 4 |
+
torch==2.4.0
|
| 5 |
+
transformers
|
| 6 |
+
xformers
|
| 7 |
+
bitsandbytes
|
| 8 |
+
sentencepiece
|