Spaces:
Sleeping
Sleeping
EtienneB
commited on
Commit
·
64434a5
1
Parent(s):
600dd01
update
Browse files- agent.py +89 -37
- app.py +0 -3
- requirements.txt +14 -9
agent.py
CHANGED
|
@@ -2,8 +2,7 @@ import os
|
|
| 2 |
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
from langchain_community.vectorstores import Chroma
|
| 5 |
-
from langchain_core.messages import HumanMessage, SystemMessage
|
| 6 |
-
from langchain_core.tools import tool
|
| 7 |
from langchain_huggingface import (ChatHuggingFace, HuggingFaceEmbeddings,
|
| 8 |
HuggingFaceEndpoint)
|
| 9 |
from langgraph.graph import START, MessagesState, StateGraph
|
|
@@ -33,7 +32,6 @@ tools = [
|
|
| 33 |
wiki_search, analyze_excel_file, arvix_search, audio_transcription, python_code_parser
|
| 34 |
]
|
| 35 |
|
| 36 |
-
|
| 37 |
# Load system prompt
|
| 38 |
system_prompt = """
|
| 39 |
You are a helpful assistant tasked with answering questions using a set of tools.
|
|
@@ -46,62 +44,106 @@ Your answer should only start with "FINAL ANSWER: ", then follows with the answe
|
|
| 46 |
# System message
|
| 47 |
sys_msg = SystemMessage(content=system_prompt)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
)
|
| 56 |
|
|
|
|
| 57 |
def build_graph():
|
| 58 |
-
"""Build the graph"""
|
| 59 |
|
| 60 |
# First create the HuggingFaceEndpoint
|
| 61 |
llm_endpoint = HuggingFaceEndpoint(
|
| 62 |
-
|
| 63 |
-
repo_id="mistralai/Mistral-7B-Instruct-v0.2",
|
| 64 |
-
# Other models to try:
|
| 65 |
-
# "meta-llama/Llama-2-7b-chat-hf"
|
| 66 |
-
# "google/gemma-7b-it"
|
| 67 |
-
# "mosaicml/mpt-7b-instruct"
|
| 68 |
-
# "tiiuae/falcon-7b-instruct"
|
| 69 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
| 70 |
-
temperature=0.
|
| 71 |
-
max_new_tokens=
|
| 72 |
-
timeout=
|
| 73 |
-
|
| 74 |
-
|
| 75 |
# Then wrap it with ChatHuggingFace to get chat model functionality
|
| 76 |
llm = ChatHuggingFace(llm=llm_endpoint)
|
| 77 |
|
| 78 |
# Bind tools to LLM
|
| 79 |
llm_with_tools = llm.bind_tools(tools)
|
| 80 |
|
| 81 |
-
#
|
| 82 |
def assistant(state: MessagesState):
|
| 83 |
"""Assistant node"""
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
|
|
|
| 93 |
builder = StateGraph(MessagesState)
|
| 94 |
-
builder.add_node("retriever",
|
| 95 |
builder.add_node("assistant", assistant)
|
| 96 |
builder.add_node("tools", ToolNode(tools))
|
|
|
|
| 97 |
builder.add_edge(START, "retriever")
|
| 98 |
builder.add_edge("retriever", "assistant")
|
| 99 |
builder.add_conditional_edges("assistant", tools_condition)
|
| 100 |
builder.add_edge("tools", "assistant")
|
| 101 |
-
|
| 102 |
-
|
| 103 |
return builder.compile()
|
| 104 |
|
|
|
|
| 105 |
# test
|
| 106 |
if __name__ == "__main__":
|
| 107 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
|
@@ -109,6 +151,16 @@ if __name__ == "__main__":
|
|
| 109 |
graph = build_graph()
|
| 110 |
# Run the graph
|
| 111 |
messages = [HumanMessage(content=question)]
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
from langchain_community.vectorstores import Chroma
|
| 5 |
+
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
|
|
|
|
| 6 |
from langchain_huggingface import (ChatHuggingFace, HuggingFaceEmbeddings,
|
| 7 |
HuggingFaceEndpoint)
|
| 8 |
from langgraph.graph import START, MessagesState, StateGraph
|
|
|
|
| 32 |
wiki_search, analyze_excel_file, arvix_search, audio_transcription, python_code_parser
|
| 33 |
]
|
| 34 |
|
|
|
|
| 35 |
# Load system prompt
|
| 36 |
system_prompt = """
|
| 37 |
You are a helpful assistant tasked with answering questions using a set of tools.
|
|
|
|
| 44 |
# System message
|
| 45 |
sys_msg = SystemMessage(content=system_prompt)
|
| 46 |
|
| 47 |
+
|
| 48 |
+
def get_vector_store(persist_directory="chroma_db"):
|
| 49 |
+
"""
|
| 50 |
+
Initializes and returns a Chroma vector store.
|
| 51 |
+
If the database exists, it loads it. If not, it creates it,
|
| 52 |
+
adds some initial documents, and persists them.
|
| 53 |
+
"""
|
| 54 |
+
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 55 |
+
|
| 56 |
+
if os.path.exists(persist_directory) and os.listdir(persist_directory):
|
| 57 |
+
print("Loading existing vector store...")
|
| 58 |
+
vector_store = Chroma(
|
| 59 |
+
persist_directory=persist_directory,
|
| 60 |
+
embedding_function=embedding_function
|
| 61 |
+
)
|
| 62 |
+
else:
|
| 63 |
+
print("Creating new vector store...")
|
| 64 |
+
os.makedirs(persist_directory, exist_ok=True)
|
| 65 |
+
# Example documents to add
|
| 66 |
+
initial_documents = [
|
| 67 |
+
"The Principle of Double Effect is an ethical theory that distinguishes between the intended and foreseen consequences of an action.",
|
| 68 |
+
"St. Thomas Aquinas is often associated with the development of the Principle of Double Effect.",
|
| 69 |
+
"LangGraph is a library for building stateful, multi-actor applications with LLMs.",
|
| 70 |
+
"Chroma is a vector database used for storing and retrieving embeddings."
|
| 71 |
+
]
|
| 72 |
+
vector_store = Chroma.from_texts(
|
| 73 |
+
texts=initial_documents,
|
| 74 |
+
embedding=embedding_function,
|
| 75 |
+
persist_directory=persist_directory
|
| 76 |
+
)
|
| 77 |
+
# No need to call persist() when using from_texts with a persist_directory
|
| 78 |
+
|
| 79 |
+
return vector_store
|
| 80 |
+
|
| 81 |
+
# --- Initialize Vector Store and Retriever ---
|
| 82 |
+
vector_store = get_vector_store()
|
| 83 |
+
retriever_component = vector_store.as_retriever(
|
| 84 |
+
search_type="mmr", # Use Maximum Marginal Relevance for diverse results
|
| 85 |
+
search_kwargs={'k': 2, 'lambda_mult': 0.5} # Retrieve 2 documents
|
| 86 |
)
|
| 87 |
|
| 88 |
+
|
| 89 |
def build_graph():
|
| 90 |
+
"""Build the graph"""
|
| 91 |
|
| 92 |
# First create the HuggingFaceEndpoint
|
| 93 |
llm_endpoint = HuggingFaceEndpoint(
|
| 94 |
+
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
|
| 96 |
+
temperature=0.3,
|
| 97 |
+
max_new_tokens=2048,
|
| 98 |
+
timeout=60,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
# Then wrap it with ChatHuggingFace to get chat model functionality
|
| 102 |
llm = ChatHuggingFace(llm=llm_endpoint)
|
| 103 |
|
| 104 |
# Bind tools to LLM
|
| 105 |
llm_with_tools = llm.bind_tools(tools)
|
| 106 |
|
| 107 |
+
# --- Nodes ---
|
| 108 |
def assistant(state: MessagesState):
|
| 109 |
"""Assistant node"""
|
| 110 |
+
# Prepend the system message to the state
|
| 111 |
+
messages_with_system_prompt = [sys_msg] + state["messages"]
|
| 112 |
+
return {"messages": [llm_with_tools.invoke(messages_with_system_prompt)]}
|
| 113 |
+
|
| 114 |
+
def retriever_node(state: MessagesState):
|
| 115 |
+
"""
|
| 116 |
+
Retrieves relevant documents from the vector store based on the latest human message.
|
| 117 |
+
"""
|
| 118 |
+
last_human_message = state["messages"][-1].content
|
| 119 |
+
retrieved_docs = retriever_component.invoke(last_human_message)
|
| 120 |
+
|
| 121 |
+
if retrieved_docs:
|
| 122 |
+
retrieved_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
|
| 123 |
+
# Create a ToolMessage to hold the retrieved context
|
| 124 |
+
context_message = ToolMessage(
|
| 125 |
+
content=f"Retrieved context from vector store:\n\n{retrieved_context}",
|
| 126 |
+
tool_call_id="retriever" # A descriptive ID
|
| 127 |
+
)
|
| 128 |
+
return {"messages": [context_message]}
|
| 129 |
+
|
| 130 |
+
return {"messages": []}
|
| 131 |
|
| 132 |
+
# --- Graph Definition ---
|
| 133 |
builder = StateGraph(MessagesState)
|
| 134 |
+
builder.add_node("retriever", retriever_node)
|
| 135 |
builder.add_node("assistant", assistant)
|
| 136 |
builder.add_node("tools", ToolNode(tools))
|
| 137 |
+
|
| 138 |
builder.add_edge(START, "retriever")
|
| 139 |
builder.add_edge("retriever", "assistant")
|
| 140 |
builder.add_conditional_edges("assistant", tools_condition)
|
| 141 |
builder.add_edge("tools", "assistant")
|
| 142 |
+
|
| 143 |
+
# Compile graph
|
| 144 |
return builder.compile()
|
| 145 |
|
| 146 |
+
|
| 147 |
# test
|
| 148 |
if __name__ == "__main__":
|
| 149 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
|
|
|
| 151 |
graph = build_graph()
|
| 152 |
# Run the graph
|
| 153 |
messages = [HumanMessage(content=question)]
|
| 154 |
+
# The initial state for the graph
|
| 155 |
+
initial_state = {"messages": messages}
|
| 156 |
+
|
| 157 |
+
# Invoke the graph stream to see the steps
|
| 158 |
+
for s in graph.stream(initial_state, stream_mode="values"):
|
| 159 |
+
message = s["messages"][-1]
|
| 160 |
+
if isinstance(message, ToolMessage):
|
| 161 |
+
print("---RETRIEVED CONTEXT---")
|
| 162 |
+
print(message.content)
|
| 163 |
+
print("-----------------------")
|
| 164 |
+
else:
|
| 165 |
+
message.pretty_print()
|
| 166 |
+
|
app.py
CHANGED
|
@@ -36,9 +36,6 @@ class BasicAgent:
|
|
| 36 |
|
| 37 |
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 43 |
"""
|
| 44 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 40 |
"""
|
| 41 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
requirements.txt
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
gradio
|
| 3 |
requests
|
| 4 |
pandas
|
|
|
|
| 5 |
|
| 6 |
# LangChain and ecosystem
|
| 7 |
langchain
|
|
@@ -10,24 +11,28 @@ langchain-community
|
|
| 10 |
langgraph
|
| 11 |
langchain-huggingface
|
| 12 |
langchain-chroma
|
|
|
|
| 13 |
sentence-transformers
|
| 14 |
|
| 15 |
# Hugging Face integration
|
| 16 |
huggingface_hub
|
| 17 |
transformers
|
| 18 |
-
accelerate
|
| 19 |
|
| 20 |
# Environment config
|
| 21 |
python-dotenv
|
| 22 |
|
| 23 |
# Tools dependencies
|
| 24 |
-
duckduckgo-search
|
| 25 |
-
pytz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
# Additional utilities
|
| 28 |
typing-extensions
|
| 29 |
-
asyncio-throttle
|
| 30 |
-
tenacity
|
| 31 |
-
|
| 32 |
-
# Optional: For better logging and monitoring
|
| 33 |
-
loguru # Better logging (optional)
|
|
|
|
| 2 |
gradio
|
| 3 |
requests
|
| 4 |
pandas
|
| 5 |
+
openpyxl # For reading excel files with pandas
|
| 6 |
|
| 7 |
# LangChain and ecosystem
|
| 8 |
langchain
|
|
|
|
| 11 |
langgraph
|
| 12 |
langchain-huggingface
|
| 13 |
langchain-chroma
|
| 14 |
+
chromadb # Explicitly add the Chroma database
|
| 15 |
sentence-transformers
|
| 16 |
|
| 17 |
# Hugging Face integration
|
| 18 |
huggingface_hub
|
| 19 |
transformers
|
| 20 |
+
accelerate
|
| 21 |
|
| 22 |
# Environment config
|
| 23 |
python-dotenv
|
| 24 |
|
| 25 |
# Tools dependencies
|
| 26 |
+
duckduckgo-search
|
| 27 |
+
pytz
|
| 28 |
+
wikipedia # For WikipediaLoader
|
| 29 |
+
arxiv # For ArxivLoader
|
| 30 |
+
assemblyai # For AssemblyAIAudioTranscriptLoader
|
| 31 |
+
tree-sitter # For LanguageParser
|
| 32 |
+
tree-sitter-languages # For LanguageParser
|
| 33 |
|
| 34 |
+
# Additional utilities
|
| 35 |
typing-extensions
|
| 36 |
+
asyncio-throttle
|
| 37 |
+
tenacity
|
| 38 |
+
loguru
|
|
|
|
|
|