Spaces:
Paused
Paused
move model to cpu when not using ZeroGPU
Browse files
app.py
CHANGED
|
@@ -70,26 +70,9 @@ examples = [
|
|
| 70 |
|
| 71 |
OBJ_ID = 0
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
if "predictor" not in session_state:
|
| 77 |
-
sam2_checkpoint = "checkpoints/edgetam.pt"
|
| 78 |
-
model_cfg = "edgetam.yaml"
|
| 79 |
-
predictor = build_sam2_video_predictor(
|
| 80 |
-
model_cfg, sam2_checkpoint, device="cuda"
|
| 81 |
-
)
|
| 82 |
-
print("predictor loaded")
|
| 83 |
-
|
| 84 |
-
# use bfloat16 for the entire demo
|
| 85 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
| 86 |
-
if torch.cuda.get_device_properties(0).major >= 8:
|
| 87 |
-
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
| 88 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 89 |
-
torch.backends.cudnn.allow_tf32 = True
|
| 90 |
-
|
| 91 |
-
session_state["predictor"] = predictor
|
| 92 |
-
return session_state["predictor"]
|
| 93 |
|
| 94 |
|
| 95 |
def get_video_fps(video_path):
|
|
@@ -106,10 +89,8 @@ def get_video_fps(video_path):
|
|
| 106 |
return fps
|
| 107 |
|
| 108 |
|
| 109 |
-
@spaces.GPU
|
| 110 |
def reset(session_state):
|
| 111 |
-
predictor
|
| 112 |
-
predictor.to("cuda")
|
| 113 |
session_state["input_points"] = []
|
| 114 |
session_state["input_labels"] = []
|
| 115 |
if session_state["inference_state"] is not None:
|
|
@@ -127,10 +108,8 @@ def reset(session_state):
|
|
| 127 |
)
|
| 128 |
|
| 129 |
|
| 130 |
-
@spaces.GPU
|
| 131 |
def clear_points(session_state):
|
| 132 |
-
predictor
|
| 133 |
-
predictor.to("cuda")
|
| 134 |
session_state["input_points"] = []
|
| 135 |
session_state["input_labels"] = []
|
| 136 |
if session_state["inference_state"]["tracking_has_started"]:
|
|
@@ -143,10 +122,8 @@ def clear_points(session_state):
|
|
| 143 |
)
|
| 144 |
|
| 145 |
|
| 146 |
-
@spaces.GPU
|
| 147 |
def preprocess_video_in(video_path, session_state):
|
| 148 |
-
predictor
|
| 149 |
-
predictor.to("cuda")
|
| 150 |
if video_path is None:
|
| 151 |
return (
|
| 152 |
gr.update(open=True), # video_in_drawer
|
|
@@ -210,59 +187,62 @@ def segment_with_points(
|
|
| 210 |
session_state,
|
| 211 |
evt: gr.SelectData,
|
| 212 |
):
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
session_state["
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
|
| 234 |
-
|
| 235 |
-
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
|
| 267 |
|
| 268 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
@@ -285,61 +265,68 @@ def propagate_to_all(
|
|
| 285 |
video_in,
|
| 286 |
session_state,
|
| 287 |
):
|
| 288 |
-
predictor = get_predictor(session_state)
|
| 289 |
predictor.to("cuda")
|
| 290 |
-
if (
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
None
|
| 297 |
-
session_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
)
|
| 299 |
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
print("starting propagate_in_video")
|
| 303 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
| 304 |
-
session_state["inference_state"]
|
| 305 |
-
):
|
| 306 |
-
video_segments[out_frame_idx] = {
|
| 307 |
-
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 308 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
| 309 |
-
}
|
| 310 |
-
|
| 311 |
-
# obtain the segmentation results every few frames
|
| 312 |
-
vis_frame_stride = 1
|
| 313 |
-
|
| 314 |
-
output_frames = []
|
| 315 |
-
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
| 316 |
-
transparent_background = Image.fromarray(
|
| 317 |
-
session_state["all_frames"][out_frame_idx]
|
| 318 |
-
).convert("RGBA")
|
| 319 |
-
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
| 320 |
-
mask_image = show_mask(out_mask)
|
| 321 |
-
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
| 322 |
-
output_frame = np.array(output_frame)
|
| 323 |
-
output_frames.append(output_frame)
|
| 324 |
-
|
| 325 |
-
torch.cuda.empty_cache()
|
| 326 |
-
|
| 327 |
-
# Create a video clip from the image sequence
|
| 328 |
-
original_fps = get_video_fps(video_in)
|
| 329 |
-
fps = original_fps # Frames per second
|
| 330 |
-
clip = ImageSequenceClip(output_frames, fps=fps)
|
| 331 |
-
# Write the result to a file
|
| 332 |
-
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
| 333 |
-
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
| 334 |
-
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
|
| 335 |
-
|
| 336 |
-
# Write the result to a file
|
| 337 |
-
clip.write_videofile(final_vid_output_path, codec="libx264")
|
| 338 |
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
|
| 344 |
|
| 345 |
def update_ui():
|
|
|
|
| 70 |
|
| 71 |
OBJ_ID = 0
|
| 72 |
|
| 73 |
+
sam2_checkpoint = "checkpoints/edgetam.pt"
|
| 74 |
+
model_cfg = "edgetam.yaml"
|
| 75 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
|
| 78 |
def get_video_fps(video_path):
|
|
|
|
| 89 |
return fps
|
| 90 |
|
| 91 |
|
|
|
|
| 92 |
def reset(session_state):
|
| 93 |
+
predictor.to("cpu")
|
|
|
|
| 94 |
session_state["input_points"] = []
|
| 95 |
session_state["input_labels"] = []
|
| 96 |
if session_state["inference_state"] is not None:
|
|
|
|
| 108 |
)
|
| 109 |
|
| 110 |
|
|
|
|
| 111 |
def clear_points(session_state):
|
| 112 |
+
predictor.to("cpu")
|
|
|
|
| 113 |
session_state["input_points"] = []
|
| 114 |
session_state["input_labels"] = []
|
| 115 |
if session_state["inference_state"]["tracking_has_started"]:
|
|
|
|
| 122 |
)
|
| 123 |
|
| 124 |
|
|
|
|
| 125 |
def preprocess_video_in(video_path, session_state):
|
| 126 |
+
predictor.to("cpu")
|
|
|
|
| 127 |
if video_path is None:
|
| 128 |
return (
|
| 129 |
gr.update(open=True), # video_in_drawer
|
|
|
|
| 187 |
session_state,
|
| 188 |
evt: gr.SelectData,
|
| 189 |
):
|
| 190 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
| 191 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 192 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 193 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 194 |
+
predictor.to("cuda")
|
| 195 |
+
session_state["input_points"].append(evt.index)
|
| 196 |
+
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
|
| 197 |
+
|
| 198 |
+
if point_type == "include":
|
| 199 |
+
session_state["input_labels"].append(1)
|
| 200 |
+
elif point_type == "exclude":
|
| 201 |
+
session_state["input_labels"].append(0)
|
| 202 |
+
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
|
| 203 |
+
|
| 204 |
+
# Open the image and get its dimensions
|
| 205 |
+
transparent_background = Image.fromarray(session_state["first_frame"]).convert(
|
| 206 |
+
"RGBA"
|
| 207 |
+
)
|
| 208 |
+
w, h = transparent_background.size
|
| 209 |
|
| 210 |
+
# Define the circle radius as a fraction of the smaller dimension
|
| 211 |
+
fraction = 0.01 # You can adjust this value as needed
|
| 212 |
+
radius = int(fraction * min(w, h))
|
| 213 |
|
| 214 |
+
# Create a transparent layer to draw on
|
| 215 |
+
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
| 216 |
|
| 217 |
+
for index, track in enumerate(session_state["input_points"]):
|
| 218 |
+
if session_state["input_labels"][index] == 1:
|
| 219 |
+
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
| 220 |
+
else:
|
| 221 |
+
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
| 222 |
|
| 223 |
+
# Convert the transparent layer back to an image
|
| 224 |
+
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
| 225 |
+
selected_point_map = Image.alpha_composite(
|
| 226 |
+
transparent_background, transparent_layer
|
| 227 |
+
)
|
| 228 |
|
| 229 |
+
# Let's add a positive click at (x, y) = (210, 350) to get started
|
| 230 |
+
points = np.array(session_state["input_points"], dtype=np.float32)
|
| 231 |
+
# for labels, `1` means positive click and `0` means negative click
|
| 232 |
+
labels = np.array(session_state["input_labels"], np.int32)
|
| 233 |
+
_, _, out_mask_logits = predictor.add_new_points(
|
| 234 |
+
inference_state=session_state["inference_state"],
|
| 235 |
+
frame_idx=0,
|
| 236 |
+
obj_id=OBJ_ID,
|
| 237 |
+
points=points,
|
| 238 |
+
labels=labels,
|
| 239 |
+
)
|
| 240 |
|
| 241 |
+
mask_image = show_mask((out_mask_logits[0] > 0.0).cpu().numpy())
|
| 242 |
+
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
| 243 |
|
| 244 |
+
torch.cuda.empty_cache()
|
| 245 |
+
return selected_point_map, first_frame_output, session_state
|
| 246 |
|
| 247 |
|
| 248 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
|
| 265 |
video_in,
|
| 266 |
session_state,
|
| 267 |
):
|
|
|
|
| 268 |
predictor.to("cuda")
|
| 269 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
| 270 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 271 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 272 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 273 |
+
if (
|
| 274 |
+
len(session_state["input_points"]) == 0
|
| 275 |
+
or video_in is None
|
| 276 |
+
or session_state["inference_state"] is None
|
| 277 |
+
):
|
| 278 |
+
return (
|
| 279 |
+
None,
|
| 280 |
+
session_state,
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
# run propagation throughout the video and collect the results in a dict
|
| 284 |
+
video_segments = (
|
| 285 |
+
{}
|
| 286 |
+
) # video_segments contains the per-frame segmentation results
|
| 287 |
+
print("starting propagate_in_video")
|
| 288 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
| 289 |
+
session_state["inference_state"]
|
| 290 |
+
):
|
| 291 |
+
video_segments[out_frame_idx] = {
|
| 292 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 293 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
| 294 |
+
}
|
| 295 |
+
|
| 296 |
+
# obtain the segmentation results every few frames
|
| 297 |
+
vis_frame_stride = 1
|
| 298 |
+
|
| 299 |
+
output_frames = []
|
| 300 |
+
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
| 301 |
+
transparent_background = Image.fromarray(
|
| 302 |
+
session_state["all_frames"][out_frame_idx]
|
| 303 |
+
).convert("RGBA")
|
| 304 |
+
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
| 305 |
+
mask_image = show_mask(out_mask)
|
| 306 |
+
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
| 307 |
+
output_frame = np.array(output_frame)
|
| 308 |
+
output_frames.append(output_frame)
|
| 309 |
+
|
| 310 |
+
torch.cuda.empty_cache()
|
| 311 |
+
|
| 312 |
+
# Create a video clip from the image sequence
|
| 313 |
+
original_fps = get_video_fps(video_in)
|
| 314 |
+
fps = original_fps # Frames per second
|
| 315 |
+
clip = ImageSequenceClip(output_frames, fps=fps)
|
| 316 |
+
# Write the result to a file
|
| 317 |
+
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
| 318 |
+
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
| 319 |
+
final_vid_output_path = os.path.join(
|
| 320 |
+
tempfile.gettempdir(), final_vid_output_path
|
| 321 |
)
|
| 322 |
|
| 323 |
+
# Write the result to a file
|
| 324 |
+
clip.write_videofile(final_vid_output_path, codec="libx264")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
+
return (
|
| 327 |
+
gr.update(value=final_vid_output_path),
|
| 328 |
+
session_state,
|
| 329 |
+
)
|
| 330 |
|
| 331 |
|
| 332 |
def update_ui():
|