Create musicgen_colab.py
Browse files- demos/musicgen_colab.py +494 -0
demos/musicgen_colab.py
ADDED
|
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces # <--- IMPORTANT: Add this import
|
| 2 |
+
import argparse
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import subprocess as sp
|
| 7 |
+
import sys
|
| 8 |
+
import time
|
| 9 |
+
import typing as tp
|
| 10 |
+
from tempfile import NamedTemporaryFile, gettempdir
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
import torch
|
| 13 |
+
import gradio as gr
|
| 14 |
+
from audiocraft.data.audio_utils import convert_audio
|
| 15 |
+
from audiocraft.data.audio import audio_write
|
| 16 |
+
from audiocraft.models.encodec import InterleaveStereoCompressionModel
|
| 17 |
+
from audiocraft.models import MusicGen, MultiBandDiffusion
|
| 18 |
+
import multiprocessing as mp
|
| 19 |
+
import warnings
|
| 20 |
+
|
| 21 |
+
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
|
| 22 |
+
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
| 23 |
+
|
| 24 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
| 25 |
+
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
| 26 |
+
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
| 27 |
+
torch.backends.cudnn.allow_tf32 = False
|
| 28 |
+
torch.backends.cudnn.deterministic = False
|
| 29 |
+
torch.backends.cudnn.benchmark = False
|
| 30 |
+
# torch.backends.cuda.preferred_blas_library="cublas"
|
| 31 |
+
# torch.backends.cuda.preferred_linalg_library="cusolver"
|
| 32 |
+
torch.set_float32_matmul_precision("highest")
|
| 33 |
+
|
| 34 |
+
class FileCleaner:
|
| 35 |
+
def __init__(self, file_lifetime: float = 3600):
|
| 36 |
+
self.file_lifetime = file_lifetime
|
| 37 |
+
self.files = []
|
| 38 |
+
def add(self, path: tp.Union[str, Path]):
|
| 39 |
+
self._cleanup()
|
| 40 |
+
self.files.append((time.time(), Path(path)))
|
| 41 |
+
def _cleanup(self):
|
| 42 |
+
now = time.time()
|
| 43 |
+
for time_added, path in list(self.files):
|
| 44 |
+
if now - time_added > self.file_lifetime:
|
| 45 |
+
if path.exists():
|
| 46 |
+
path.unlink()
|
| 47 |
+
self.files.pop(0)
|
| 48 |
+
else:
|
| 49 |
+
break
|
| 50 |
+
|
| 51 |
+
file_cleaner = FileCleaner()
|
| 52 |
+
|
| 53 |
+
def convert_wav_to_mp4(wav_path, output_path=None):
|
| 54 |
+
"""Converts a WAV file to a waveform MP4 video using ffmpeg."""
|
| 55 |
+
if output_path is None:
|
| 56 |
+
# Create output path in the same directory as the input
|
| 57 |
+
output_path = Path(wav_path).with_suffix(".mp4")
|
| 58 |
+
try:
|
| 59 |
+
command = [
|
| 60 |
+
"ffmpeg",
|
| 61 |
+
"-y", # Overwrite output file if it exists
|
| 62 |
+
"-i", str(wav_path),
|
| 63 |
+
"-filter_complex",
|
| 64 |
+
"[0:a]showwaves=s=1280x202:mode=line,format=yuv420p[v]", # Waveform filter
|
| 65 |
+
"-map", "[v]",
|
| 66 |
+
"-map", "0:a",
|
| 67 |
+
"-c:v", "libx264", # Video codec
|
| 68 |
+
"-c:a", "aac", # Audio codec
|
| 69 |
+
"-preset", "fast", # Important, don't do veryslow.
|
| 70 |
+
str(output_path),
|
| 71 |
+
]
|
| 72 |
+
process = sp.run(command, capture_output=True, text=True, check=True)
|
| 73 |
+
return str(output_path)
|
| 74 |
+
except sp.CalledProcessError as e:
|
| 75 |
+
print(f"Error in ffmpeg conversion: {e}")
|
| 76 |
+
print(f"ffmpeg stdout: {e.stdout}")
|
| 77 |
+
print(f"ffmpeg stderr: {e.stderr}")
|
| 78 |
+
raise # Re-raise the exception to be caught by Gradio
|
| 79 |
+
|
| 80 |
+
def model_worker(model_name: str, task_queue: mp.Queue, result_queue: mp.Queue):
|
| 81 |
+
"""
|
| 82 |
+
Persistent worker process (used when NOT running as a daemon).
|
| 83 |
+
"""
|
| 84 |
+
try:
|
| 85 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 86 |
+
model = MusicGen.get_pretrained(model_name, device=device)
|
| 87 |
+
mbd = MultiBandDiffusion.get_mbd_musicgen(device=device)
|
| 88 |
+
while True:
|
| 89 |
+
task = task_queue.get()
|
| 90 |
+
if task is None:
|
| 91 |
+
break
|
| 92 |
+
task_id, text, melody, duration, use_diffusion, gen_params = task
|
| 93 |
+
try:
|
| 94 |
+
model.set_generation_params(duration=duration, **gen_params)
|
| 95 |
+
target_sr = model.sample_rate
|
| 96 |
+
target_ac = 1
|
| 97 |
+
processed_melody = None
|
| 98 |
+
if melody:
|
| 99 |
+
sr, melody_data = melody
|
| 100 |
+
melody_tensor = torch.from_numpy(melody_data).to(device).float().t()
|
| 101 |
+
if melody_tensor.ndim == 1:
|
| 102 |
+
melody_tensor = melody_tensor.unsqueeze(0)
|
| 103 |
+
melody_tensor = melody_tensor[..., :int(sr * duration)]
|
| 104 |
+
processed_melody = convert_audio(melody_tensor, sr, target_sr, target_ac)
|
| 105 |
+
if processed_melody is not None:
|
| 106 |
+
output, tokens = model.generate_with_chroma(
|
| 107 |
+
descriptions=[text],
|
| 108 |
+
melody_wavs=[processed_melody],
|
| 109 |
+
melody_sample_rate=target_sr,
|
| 110 |
+
progress=True,
|
| 111 |
+
return_tokens=True
|
| 112 |
+
)
|
| 113 |
+
else:
|
| 114 |
+
output, tokens = model.generate([text], progress=True, return_tokens=True)
|
| 115 |
+
output = output.detach().cpu()
|
| 116 |
+
if use_diffusion:
|
| 117 |
+
if isinstance(model.compression_model, InterleaveStereoCompressionModel):
|
| 118 |
+
left, right = model.compression_model.get_left_right_codes(tokens)
|
| 119 |
+
tokens = torch.cat([left, right])
|
| 120 |
+
outputs_diffusion = mbd.tokens_to_wav(tokens)
|
| 121 |
+
if isinstance(model.compression_model, InterleaveStereoCompressionModel):
|
| 122 |
+
assert outputs_diffusion.shape[1] == 1 # output is mono
|
| 123 |
+
outputs_diffusion = rearrange(outputs_diffusion, '(s b) c t -> b (s c) t', s=2)
|
| 124 |
+
outputs_diffusion = outputs_diffusion.detach().cpu()
|
| 125 |
+
result_queue.put((task_id, (output, outputs_diffusion)))
|
| 126 |
+
else:
|
| 127 |
+
result_queue.put((task_id, (output, None)))
|
| 128 |
+
except Exception as e:
|
| 129 |
+
result_queue.put((task_id, e))
|
| 130 |
+
except Exception as e:
|
| 131 |
+
result_queue.put((-1, e))
|
| 132 |
+
|
| 133 |
+
class Predictor:
|
| 134 |
+
def __init__(self, model_name: str, depth: str):
|
| 135 |
+
self.model_name = model_name
|
| 136 |
+
self.is_daemon = mp.current_process().daemon
|
| 137 |
+
if self.is_daemon:
|
| 138 |
+
# Running in a daemonic process (e.g., on Spaces)
|
| 139 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 140 |
+
self.model = MusicGen.get_pretrained(self.model_name, device=self.device, depth=depth)
|
| 141 |
+
self.mbd = MultiBandDiffusion.get_mbd_musicgen(device=self.device) # Load MBD here too
|
| 142 |
+
self.current_task_id = 0 # Initialize task ID
|
| 143 |
+
else:
|
| 144 |
+
# Running in a non-daemonic process (e.g., locally)
|
| 145 |
+
self.task_queue = mp.Queue()
|
| 146 |
+
self.result_queue = mp.Queue()
|
| 147 |
+
self.process = mp.Process(
|
| 148 |
+
target=model_worker, args=(self.model_name, self.task_queue, self.result_queue)
|
| 149 |
+
)
|
| 150 |
+
self.process.start()
|
| 151 |
+
self.current_task_id = 0
|
| 152 |
+
self._check_initialization()
|
| 153 |
+
|
| 154 |
+
def _check_initialization(self):
|
| 155 |
+
"""Check if the worker process initialized successfully (only in non-daemon mode)."""
|
| 156 |
+
if not self.is_daemon:
|
| 157 |
+
time.sleep(2)
|
| 158 |
+
try:
|
| 159 |
+
task_id, result = self.result_queue.get(timeout=3)
|
| 160 |
+
if isinstance(result, Exception):
|
| 161 |
+
if task_id == -1:
|
| 162 |
+
raise RuntimeError("Model loading failed in worker process.") from result
|
| 163 |
+
except:
|
| 164 |
+
pass
|
| 165 |
+
|
| 166 |
+
def predict(self, text, melody, duration, use_diffusion, **gen_params):
|
| 167 |
+
"""Submits a prediction task."""
|
| 168 |
+
if self.is_daemon:
|
| 169 |
+
# Directly perform the prediction (single-process mode)
|
| 170 |
+
self.current_task_id +=1
|
| 171 |
+
task_id = self.current_task_id
|
| 172 |
+
try:
|
| 173 |
+
self.model.set_generation_params(duration=duration, **gen_params)
|
| 174 |
+
target_sr = self.model.sample_rate
|
| 175 |
+
target_ac = 1
|
| 176 |
+
processed_melody = None
|
| 177 |
+
if melody:
|
| 178 |
+
sr, melody_data = melody
|
| 179 |
+
melody_tensor = torch.from_numpy(melody_data).to(self.device).float().t()
|
| 180 |
+
if melody_tensor.ndim == 1:
|
| 181 |
+
melody_tensor = melody_tensor.unsqueeze(0)
|
| 182 |
+
melody_tensor = melody_tensor[..., :int(sr * duration)]
|
| 183 |
+
processed_melody = convert_audio(melody_tensor, sr, target_sr, target_ac)
|
| 184 |
+
if processed_melody is not None:
|
| 185 |
+
output, tokens = self.model.generate_with_chroma(
|
| 186 |
+
descriptions=[text],
|
| 187 |
+
melody_wavs=[processed_melody],
|
| 188 |
+
melody_sample_rate=target_sr,
|
| 189 |
+
progress=True,
|
| 190 |
+
return_tokens=True
|
| 191 |
+
)
|
| 192 |
+
else:
|
| 193 |
+
output, tokens = self.model.generate([text], progress=True, return_tokens=True)
|
| 194 |
+
output = output.detach().cpu()
|
| 195 |
+
if use_diffusion:
|
| 196 |
+
if isinstance(self.model.compression_model, InterleaveStereoCompressionModel):
|
| 197 |
+
left, right = self.model.compression_model.get_left_right_codes(tokens)
|
| 198 |
+
tokens = torch.cat([left, right])
|
| 199 |
+
outputs_diffusion = self.mbd.tokens_to_wav(tokens)
|
| 200 |
+
if isinstance(self.model.compression_model, InterleaveStereoCompressionModel):
|
| 201 |
+
assert outputs_diffusion.shape[1] == 1 # output is mono
|
| 202 |
+
outputs_diffusion = rearrange(outputs_diffusion, '(s b) c t -> b (s c) t', s=2)
|
| 203 |
+
outputs_diffusion = outputs_diffusion.detach().cpu()
|
| 204 |
+
return task_id, (output, outputs_diffusion) #Return the task id.
|
| 205 |
+
else:
|
| 206 |
+
return task_id, (output, None)
|
| 207 |
+
except Exception as e:
|
| 208 |
+
return task_id, e
|
| 209 |
+
else:
|
| 210 |
+
# Use the multiprocessing queue (multi-process mode)
|
| 211 |
+
self.current_task_id += 1
|
| 212 |
+
task = (self.current_task_id, text, melody, duration, use_diffusion, gen_params)
|
| 213 |
+
self.task_queue.put(task)
|
| 214 |
+
return self.current_task_id
|
| 215 |
+
|
| 216 |
+
def get_result(self, task_id):
|
| 217 |
+
"""Retrieves the result of a prediction task."""
|
| 218 |
+
if self.is_daemon:
|
| 219 |
+
# Results are returned directly by 'predict' in daemon mode
|
| 220 |
+
result_id, result = task_id, task_id #predictor return (task_id, results)
|
| 221 |
+
else:
|
| 222 |
+
# Get result from the queue (multi-process mode)
|
| 223 |
+
while True:
|
| 224 |
+
result_task_id, result = self.result_queue.get()
|
| 225 |
+
if result_task_id == task_id:
|
| 226 |
+
break # Found the correct result
|
| 227 |
+
if isinstance(result, Exception):
|
| 228 |
+
raise result
|
| 229 |
+
return result
|
| 230 |
+
|
| 231 |
+
def shutdown(self):
|
| 232 |
+
"""Shuts down the worker process (if running)."""
|
| 233 |
+
if not self.is_daemon and self.process.is_alive():
|
| 234 |
+
self.task_queue.put(None)
|
| 235 |
+
self.process.join()
|
| 236 |
+
|
| 237 |
+
_default_model_name = "facebook/musicgen-melody"
|
| 238 |
+
|
| 239 |
+
@spaces.GPU(duration=90) # Use the decorator for Spaces
|
| 240 |
+
def predict_full(model, model_path, depth, use_mbd, text, melody, duration, topk, topp, temperature, cfg_coef):
|
| 241 |
+
# Initialize Predictor *INSIDE* the function
|
| 242 |
+
predictor = Predictor(model, depth)
|
| 243 |
+
task_id, (wav, diffusion_wav) = predictor.predict( # Unpack directly!
|
| 244 |
+
text=text,
|
| 245 |
+
melody=melody,
|
| 246 |
+
duration=duration,
|
| 247 |
+
use_diffusion=use_mbd,
|
| 248 |
+
top_k=topk,
|
| 249 |
+
top_p=topp,
|
| 250 |
+
temperature=temperature,
|
| 251 |
+
cfg_coef=cfg_coef,
|
| 252 |
+
)
|
| 253 |
+
# Save and return audio files
|
| 254 |
+
wav_paths = []
|
| 255 |
+
video_paths = []
|
| 256 |
+
# Save standard output
|
| 257 |
+
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
| 258 |
+
audio_write(
|
| 259 |
+
file.name, wav[0], 44100, strategy="loudness", #hardcoded sample rate
|
| 260 |
+
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False
|
| 261 |
+
)
|
| 262 |
+
wav_paths.append(file.name)
|
| 263 |
+
# Make and clean up video:
|
| 264 |
+
video_path = convert_wav_to_mp4(file.name)
|
| 265 |
+
video_paths.append(video_path)
|
| 266 |
+
file_cleaner.add(file.name)
|
| 267 |
+
file_cleaner.add(video_path)
|
| 268 |
+
# Save MBD output if used
|
| 269 |
+
if diffusion_wav is not None:
|
| 270 |
+
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
| 271 |
+
audio_write(
|
| 272 |
+
file.name, diffusion_wav[0], 44100, strategy="loudness", #hardcoded sample rate
|
| 273 |
+
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False
|
| 274 |
+
)
|
| 275 |
+
wav_paths.append(file.name)
|
| 276 |
+
# Make and clean up video:
|
| 277 |
+
video_path = convert_wav_to_mp4(file.name)
|
| 278 |
+
video_paths.append(video_path)
|
| 279 |
+
file_cleaner.add(file.name)
|
| 280 |
+
file_cleaner.add(video_path)
|
| 281 |
+
# Shutdown predictor to prevent hanging processes!
|
| 282 |
+
if not predictor.is_daemon: # Important!
|
| 283 |
+
predictor.shutdown()
|
| 284 |
+
if use_mbd:
|
| 285 |
+
return video_paths[0], wav_paths[0], video_paths[1], wav_paths[1]
|
| 286 |
+
return video_paths[0], wav_paths[0], None, None
|
| 287 |
+
|
| 288 |
+
def toggle_audio_src(choice):
|
| 289 |
+
if choice == "mic":
|
| 290 |
+
return gr.update(sources="microphone", value=None, label="Microphone")
|
| 291 |
+
else:
|
| 292 |
+
return gr.update(sources="upload", value=None, label="File")
|
| 293 |
+
|
| 294 |
+
def toggle_diffusion(choice):
|
| 295 |
+
if choice == "MultiBand_Diffusion":
|
| 296 |
+
return [gr.update(visible=True)] * 2
|
| 297 |
+
else:
|
| 298 |
+
return [gr.update(visible=False)] * 2
|
| 299 |
+
|
| 300 |
+
def ui_full(launch_kwargs):
|
| 301 |
+
with gr.Blocks() as interface:
|
| 302 |
+
gr.Markdown(
|
| 303 |
+
"""
|
| 304 |
+
# MusicGen
|
| 305 |
+
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
| 306 |
+
a simple and controllable model for music generation
|
| 307 |
+
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
|
| 308 |
+
"""
|
| 309 |
+
)
|
| 310 |
+
with gr.Row():
|
| 311 |
+
with gr.Column():
|
| 312 |
+
with gr.Row():
|
| 313 |
+
text = gr.Text(label="Input Text", interactive=True)
|
| 314 |
+
with gr.Column():
|
| 315 |
+
radio = gr.Radio(["file", "mic"], value="file",
|
| 316 |
+
label="Condition on a melody (optional) File or Mic")
|
| 317 |
+
melody = gr.Audio(sources="upload", type="numpy", label="File",
|
| 318 |
+
interactive=True, elem_id="melody-input")
|
| 319 |
+
with gr.Row():
|
| 320 |
+
submit = gr.Button("Submit")
|
| 321 |
+
# _ = gr.Button("Interrupt").click(fn=interrupt, queue=False) # Interrupt is now handled implicitly
|
| 322 |
+
with gr.Row():
|
| 323 |
+
model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small",
|
| 324 |
+
"facebook/musicgen-large", "facebook/musicgen-melody-large",
|
| 325 |
+
"facebook/musicgen-stereo-small", "facebook/musicgen-stereo-medium",
|
| 326 |
+
"facebook/musicgen-stereo-melody", "facebook/musicgen-stereo-large",
|
| 327 |
+
"facebook/musicgen-stereo-melody-large"],
|
| 328 |
+
label="Model", value="facebook/musicgen-melody", interactive=True)
|
| 329 |
+
model_path = gr.Text(label="Model Path (custom models)", interactive=False, visible=False) # Keep, but hide
|
| 330 |
+
depth = gr.Radio(["float32", "bfloat16", "float16"],
|
| 331 |
+
label="Model Precision", value="float32", interactive=True)
|
| 332 |
+
with gr.Row():
|
| 333 |
+
decoder = gr.Radio(["Default", "MultiBand_Diffusion"],
|
| 334 |
+
label="Decoder", value="Default", interactive=True)
|
| 335 |
+
with gr.Row():
|
| 336 |
+
duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True)
|
| 337 |
+
with gr.Row():
|
| 338 |
+
topk = gr.Number(label="Top-k", value=250, interactive=True)
|
| 339 |
+
topp = gr.Number(label="Top-p", value=0, interactive=True)
|
| 340 |
+
temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
|
| 341 |
+
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
|
| 342 |
+
with gr.Column():
|
| 343 |
+
output = gr.Video(label="Generated Music")
|
| 344 |
+
audio_output = gr.Audio(label="Generated Music (wav)", type='filepath')
|
| 345 |
+
diffusion_output = gr.Video(label="MultiBand Diffusion Decoder", visible=False)
|
| 346 |
+
audio_diffusion = gr.Audio(label="MultiBand Diffusion Decoder (wav)", type='filepath', visible=False)
|
| 347 |
+
|
| 348 |
+
submit.click(
|
| 349 |
+
toggle_diffusion, decoder, [diffusion_output, audio_diffusion], queue=False
|
| 350 |
+
).then(
|
| 351 |
+
predict_full,
|
| 352 |
+
inputs=[model, model_path, depth, decoder, text, melody, duration, topk, topp, temperature, cfg_coef],
|
| 353 |
+
outputs=[output, audio_output, diffusion_output, audio_diffusion]
|
| 354 |
+
)
|
| 355 |
+
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
|
| 356 |
+
|
| 357 |
+
gr.Examples(
|
| 358 |
+
fn=predict_full,
|
| 359 |
+
examples=[
|
| 360 |
+
[
|
| 361 |
+
"An 80s driving pop song with heavy drums and synth pads in the background",
|
| 362 |
+
"./assets/bach.mp3",
|
| 363 |
+
"facebook/musicgen-melody",
|
| 364 |
+
"Default"
|
| 365 |
+
],
|
| 366 |
+
[
|
| 367 |
+
"A cheerful country song with acoustic guitars",
|
| 368 |
+
"./assets/bolero_ravel.mp3",
|
| 369 |
+
"facebook/musicgen-melody",
|
| 370 |
+
"Default"
|
| 371 |
+
],
|
| 372 |
+
[
|
| 373 |
+
"90s rock song with electric guitar and heavy drums",
|
| 374 |
+
None,
|
| 375 |
+
"facebook/musicgen-medium",
|
| 376 |
+
"Default"
|
| 377 |
+
],
|
| 378 |
+
[
|
| 379 |
+
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
|
| 380 |
+
"./assets/bach.mp3",
|
| 381 |
+
"facebook/musicgen-melody",
|
| 382 |
+
"Default"
|
| 383 |
+
],
|
| 384 |
+
[
|
| 385 |
+
"lofi slow bpm electro chill with organic samples",
|
| 386 |
+
None,
|
| 387 |
+
"facebook/musicgen-medium",
|
| 388 |
+
"Default"
|
| 389 |
+
],
|
| 390 |
+
[
|
| 391 |
+
"Punk rock with loud drum and power guitar",
|
| 392 |
+
None,
|
| 393 |
+
"facebook/musicgen-medium",
|
| 394 |
+
"MultiBand_Diffusion"
|
| 395 |
+
],
|
| 396 |
+
],
|
| 397 |
+
inputs=[text, melody, model, decoder],
|
| 398 |
+
outputs=[output]
|
| 399 |
+
)
|
| 400 |
+
gr.Markdown(
|
| 401 |
+
"""
|
| 402 |
+
### More details
|
| 403 |
+
|
| 404 |
+
The model will generate a short music extract based on the description you provided.
|
| 405 |
+
The model can generate up to 30 seconds of audio in one pass.
|
| 406 |
+
|
| 407 |
+
The model was trained with description from a stock music catalog, descriptions that will work best
|
| 408 |
+
should include some level of details on the instruments present, along with some intended use case
|
| 409 |
+
(e.g. adding "perfect for a commercial" can somehow help).
|
| 410 |
+
|
| 411 |
+
Using one of the `melody` model (e.g. `musicgen-melody-*`), you can optionally provide a reference audio
|
| 412 |
+
from which a broad melody will be extracted.
|
| 413 |
+
The model will then try to follow both the description and melody provided.
|
| 414 |
+
For best results, the melody should be 30 seconds long (I know, the samples we provide are not...)
|
| 415 |
+
|
| 416 |
+
It is now possible to extend the generation by feeding back the end of the previous chunk of audio.
|
| 417 |
+
This can take a long time, and the model might lose consistency. The model might also
|
| 418 |
+
decide at arbitrary positions that the song ends.
|
| 419 |
+
|
| 420 |
+
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
|
| 421 |
+
An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds
|
| 422 |
+
are generated each time.
|
| 423 |
+
|
| 424 |
+
We present 10 model variations:
|
| 425 |
+
1. facebook/musicgen-melody -- a music generation model capable of generating music condition
|
| 426 |
+
on text and melody inputs. **Note**, you can also use text only.
|
| 427 |
+
2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only.
|
| 428 |
+
3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only.
|
| 429 |
+
4. facebook/musicgen-large -- a 3.3B transformer decoder conditioned on text only.
|
| 430 |
+
5. facebook/musicgen-melody-large -- a 3.3B transformer decoder conditioned on text and melody.
|
| 431 |
+
6. facebook/musicgen-stereo-small -- a 300M transformer decoder conditioned on text only, fine tuned for stereo output.
|
| 432 |
+
7. facebook/musicgen-stereo-medium -- a 1.5B transformer decoder conditioned on text only, fine tuned for stereo output.
|
| 433 |
+
8. facebook/musicgen-stereo-melody -- a 1.5B transformer decoder conditioned on text and melody, fine tuned for stereo output.
|
| 434 |
+
9. facebook/musicgen-stereo-large -- a 3.3B transformer decoder conditioned on text only, fine tuned for stereo output.
|
| 435 |
+
10. facebook/musicgen-stereo-melody-large -- a 3.3B transformer decoder conditioned on text and melody, fine tuned for stereo output.
|
| 436 |
+
|
| 437 |
+
We also present two way of decoding the audio tokens:
|
| 438 |
+
1. Use the default GAN based compression model. It can suffer from artifacts especially
|
| 439 |
+
for crashes, snares etc.
|
| 440 |
+
2. Use [MultiBand Diffusion](https://arxiv.org/abs/2308.02560). Should improve the audio quality,
|
| 441 |
+
at an extra computational cost. When this is selected, we provide both the GAN based decoded
|
| 442 |
+
audio, and the one obtained with MBD.
|
| 443 |
+
|
| 444 |
+
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md)
|
| 445 |
+
for more details.
|
| 446 |
+
"""
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
interface.queue().launch(**launch_kwargs)
|
| 450 |
+
|
| 451 |
+
if __name__ == '__main__':
|
| 452 |
+
parser = argparse.ArgumentParser()
|
| 453 |
+
parser.add_argument(
|
| 454 |
+
'--listen',
|
| 455 |
+
type=str,
|
| 456 |
+
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
|
| 457 |
+
help='IP to listen on for connections to Gradio',
|
| 458 |
+
)
|
| 459 |
+
parser.add_argument(
|
| 460 |
+
'--username', type=str, default='', help='Username for authentication'
|
| 461 |
+
)
|
| 462 |
+
parser.add_argument(
|
| 463 |
+
'--password', type=str, default='', help='Password for authentication'
|
| 464 |
+
)
|
| 465 |
+
parser.add_argument(
|
| 466 |
+
'--server_port',
|
| 467 |
+
type=int,
|
| 468 |
+
default=0,
|
| 469 |
+
help='Port to run the server listener on',
|
| 470 |
+
)
|
| 471 |
+
parser.add_argument(
|
| 472 |
+
'--inbrowser', action='store_true', help='Open in browser'
|
| 473 |
+
)
|
| 474 |
+
parser.add_argument(
|
| 475 |
+
'--share', action='store_true', help='Share the gradio UI'
|
| 476 |
+
)
|
| 477 |
+
args = parser.parse_args()
|
| 478 |
+
launch_kwargs = {}
|
| 479 |
+
launch_kwargs['server_name'] = args.listen
|
| 480 |
+
if args.username and args.password:
|
| 481 |
+
launch_kwargs['auth'] = (args.username, args.password)
|
| 482 |
+
if args.server_port:
|
| 483 |
+
launch_kwargs['server_port'] = args.server_port
|
| 484 |
+
if args.inbrowser:
|
| 485 |
+
launch_kwargs['inbrowser'] = args.inbrowser
|
| 486 |
+
if args.share:
|
| 487 |
+
launch_kwargs['share'] = True
|
| 488 |
+
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
|
| 489 |
+
# Added predictor shutdown
|
| 490 |
+
try:
|
| 491 |
+
ui_full(launch_kwargs)
|
| 492 |
+
finally:
|
| 493 |
+
if _predictor is not None:
|
| 494 |
+
_predictor.shutdown()
|