Update app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,10 @@
|
|
| 1 |
-
#from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 2 |
-
import soundfile as sf
|
| 3 |
-
import torch
|
| 4 |
import gradio as gr
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
# load model and processor
|
| 8 |
-
from transformers import AutoProcessor, AutoModelForCTC
|
| 9 |
-
|
| 10 |
-
processor = AutoProcessor.from_pretrained("h4d35/Wav2Vec2-hi")
|
| 11 |
-
|
| 12 |
-
model = AutoModelForCTC.from_pretrained("h4d35/Wav2Vec2-hi")
|
| 13 |
-
|
| 14 |
-
# define function to read in sound file
|
| 15 |
-
def map_to_array(file):
|
| 16 |
-
speech, _ = sf.read(file)
|
| 17 |
-
return speech
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# tokenize
|
| 22 |
-
def inference(audio):
|
| 23 |
-
input_values = processor(map_to_array(audio.name), return_tensors="pt", padding="longest").input_values # Batch size 1
|
| 24 |
-
|
| 25 |
-
# retrieve logits
|
| 26 |
-
logits = model(input_values).logits
|
| 27 |
-
|
| 28 |
-
# take argmax and decode
|
| 29 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
| 30 |
-
transcription = processor.batch_decode(predicted_ids)
|
| 31 |
-
return transcription[0]
|
| 32 |
-
|
| 33 |
-
inputs = gr.inputs.Audio(label="Input Audio", type="file")
|
| 34 |
-
outputs = gr.outputs.Textbox(label="Output Text")
|
| 35 |
-
|
| 36 |
title = "HindiASR"
|
| 37 |
-
description = "
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
#examples=[['
|
| 41 |
-
gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
title = "HindiASR"
|
| 3 |
+
description = "Gradio demo for HindiASR"
|
| 4 |
+
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.06678'>Large-Scale Self- and Semi-Supervised Learning for Speech Translation</a></p>"
|
| 5 |
+
|
| 6 |
+
# examples = [['common_voice_en_18301577.mp3']]
|
| 7 |
+
gr.Interface.load("huggingface/h4d35/Wav2Vec2-hi"",
|
| 8 |
+
title=title,
|
| 9 |
+
description=description
|
| 10 |
+
).launch()
|