Spaces:
Sleeping
Sleeping
File size: 7,043 Bytes
01d5a5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import json
import os
import numpy as np
from .bio import Chunk, Note
@dataclass
class ChunkSerializer:
"""Chunk serialization/deserialization class."""
@staticmethod
def to_dict(chunk: Chunk) -> Dict[str, Any]:
"""Serialize Chunk object to dictionary.
Args:
chunk: The Chunk object to serialize.
Returns:
Dictionary representation of the Chunk.
"""
return {
"id": chunk.id,
"document_id": chunk.document_id,
"content": chunk.content,
"embedding": chunk.embedding.tolist()
if chunk.embedding is not None
else None,
"tags": chunk.tags,
"topic": chunk.topic,
}
@staticmethod
def from_dict(data: Dict[str, Any]) -> Chunk:
"""Deserialize dictionary to Chunk object.
Args:
data: Dictionary containing chunk data.
Returns:
Reconstructed Chunk object.
"""
return Chunk(
id=data["id"],
document_id=data["document_id"],
content=data["content"],
embedding=np.array(data["embedding"]) if data.get("embedding") else None,
tags=data.get("tags"),
topic=data.get("topic"),
)
@dataclass
class NoteSerializer:
"""Note serialization/deserialization class."""
@staticmethod
def to_dict(note: Note) -> Dict[str, Any]:
"""Serialize Note object to dictionary.
Args:
note: The Note object to serialize.
Returns:
Dictionary representation of the Note.
"""
return {
"noteId": note.id,
"content": note.content,
"createTime": note.create_time,
"memoryType": note.memory_type,
"embedding": note.embedding.tolist()
if note.embedding is not None
else None,
"title": note.title,
"summary": note.summary,
"insight": note.insight,
"tags": note.tags if note.tags else [],
"topic": note.topic,
"chunks": [ChunkSerializer.to_dict(chunk) for chunk in note.chunks],
}
@staticmethod
def from_dict(data: Dict[str, Any]) -> Note:
"""Deserialize dictionary to Note object.
Args:
data: Dictionary containing note data.
Returns:
Reconstructed Note object.
"""
chunks = [
ChunkSerializer.from_dict(chunk_data)
for chunk_data in data.get("chunks", [])
]
return Note(
noteId=data["noteId"],
content=data["content"],
createTime=data["createTime"],
memoryType=data["memoryType"],
embedding=np.array(data["embedding"]) if data.get("embedding") else None,
chunks=chunks,
title=data.get("title", ""),
summary=data.get("summary", ""),
insight=data.get("insight", ""),
tags=data.get("tags", []),
topic=data.get("topic"),
)
class NotesStorage:
"""Notes storage management class."""
def __init__(self, base_dir: str = None):
"""Initialize the NotesStorage.
Args:
base_dir: Base directory for storing notes. If None, uses a default path.
"""
if base_dir is None:
base_dir = os.path.join(os.getcwd(), "resources/L2/data_pipeline/raw_data")
self.base_dir = base_dir
self.notes_path = os.path.join(base_dir, "notes.json")
self.topics_path = os.path.join(base_dir, "topics.json")
def save_notes(self, notes: List[Note]) -> Dict[str, Any]:
"""Save Notes list to file.
Args:
notes: List of Note objects to save.
Returns:
Dictionary containing save status, count, and validation results.
"""
# Ensure directory exists
os.makedirs(self.base_dir, exist_ok=True)
# Collect validation information
validation_info = {
"total_notes": len(notes),
"total_chunks": 0,
"note_ids": set(),
"chunk_ids": set(),
}
# Serialize notes
serializable_notes = []
for note in notes:
validation_info["note_ids"].add(str(note.id))
validation_info["total_chunks"] += len(note.chunks)
for chunk in note.chunks:
validation_info["chunk_ids"].add(str(chunk.id))
serializable_notes.append(NoteSerializer.to_dict(note))
# Save to file
with open(self.notes_path, "w", encoding="utf-8") as f:
json.dump(serializable_notes, f, ensure_ascii=False, indent=2)
# Validate saved data
with open(self.notes_path, "r", encoding="utf-8") as f:
saved_notes = json.load(f)
saved_validation = {
"total_notes": len(saved_notes),
"total_chunks": sum(len(note["chunks"]) for note in saved_notes),
"note_ids": {str(note["noteId"]) for note in saved_notes},
"chunk_ids": {
str(chunk["id"]) for note in saved_notes for chunk in note["chunks"]
},
}
validation_result = {
"notes_count_match": validation_info["total_notes"]
== saved_validation["total_notes"],
"chunks_count_match": validation_info["total_chunks"]
== saved_validation["total_chunks"],
"note_ids_match": validation_info["note_ids"]
== saved_validation["note_ids"],
"chunk_ids_match": validation_info["chunk_ids"]
== saved_validation["chunk_ids"],
}
return {
"message": f"Notes saved to {self.notes_path}",
"count": len(serializable_notes),
"validation": validation_result,
"stats": {
"original": {
k: len(v) if isinstance(v, set) else v
for k, v in validation_info.items()
},
"saved": {
k: len(v) if isinstance(v, set) else v
for k, v in saved_validation.items()
},
},
}
def load_notes(self) -> List[Note]:
"""Load Notes list from file.
Returns:
List of Note objects loaded from file.
Raises:
FileNotFoundError: If the notes file doesn't exist.
"""
if not os.path.exists(self.notes_path):
raise FileNotFoundError(f"Notes file not found at {self.notes_path}")
with open(self.notes_path, "r", encoding="utf-8") as f:
notes_data = json.load(f)
return [NoteSerializer.from_dict(note_data) for note_data in notes_data]
|