Spaces:
Runtime error
Runtime error
Add files
Browse files- .gitignore +1 -0
- README.md +1 -1
- app.py +197 -0
- requirements.txt +3 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
images
|
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🌖
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 2.9.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 2.9.3
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import functools
|
| 7 |
+
import io
|
| 8 |
+
import os
|
| 9 |
+
import pathlib
|
| 10 |
+
import tarfile
|
| 11 |
+
|
| 12 |
+
import deepdanbooru as dd
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import huggingface_hub
|
| 15 |
+
import numpy as np
|
| 16 |
+
import PIL.Image
|
| 17 |
+
import tensorflow as tf
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
|
| 20 |
+
TITLE = 'TADNE Image Search with DeepDanbooru'
|
| 21 |
+
DESCRIPTION = '''The original TADNE site is https://thisanimedoesnotexist.ai/.
|
| 22 |
+
|
| 23 |
+
This app shows images similar to the query image from images generated
|
| 24 |
+
by the TADNE model with seed 0-99999.
|
| 25 |
+
Here, image similarity is measured by the L2 distance of the intermediate
|
| 26 |
+
features by the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)
|
| 27 |
+
model.
|
| 28 |
+
|
| 29 |
+
Known issues:
|
| 30 |
+
- The `Seed` table in the output doesn't refresh properly in gradio 2.9.1.
|
| 31 |
+
https://github.com/gradio-app/gradio/issues/921
|
| 32 |
+
'''
|
| 33 |
+
ARTICLE = None
|
| 34 |
+
|
| 35 |
+
TOKEN = os.environ['TOKEN']
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def parse_args() -> argparse.Namespace:
|
| 39 |
+
parser = argparse.ArgumentParser()
|
| 40 |
+
parser.add_argument('--theme', type=str, default='dark-grass')
|
| 41 |
+
parser.add_argument('--live', action='store_true')
|
| 42 |
+
parser.add_argument('--share', action='store_true')
|
| 43 |
+
parser.add_argument('--port', type=int)
|
| 44 |
+
parser.add_argument('--disable-queue',
|
| 45 |
+
dest='enable_queue',
|
| 46 |
+
action='store_false')
|
| 47 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
| 48 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
| 49 |
+
return parser.parse_args()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def download_image_tarball(size: int, dirname: str) -> pathlib.Path:
|
| 53 |
+
path = hf_hub_download('hysts/TADNE-sample-images',
|
| 54 |
+
f'{size}/{dirname}.tar',
|
| 55 |
+
repo_type='dataset',
|
| 56 |
+
use_auth_token=TOKEN)
|
| 57 |
+
return path
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def load_deepdanbooru_predictions(dirname: str) -> np.ndarray:
|
| 61 |
+
path = hf_hub_download(
|
| 62 |
+
'hysts/TADNE-sample-images',
|
| 63 |
+
f'prediction_results/deepdanbooru/intermediate_features/{dirname}.npy',
|
| 64 |
+
repo_type='dataset',
|
| 65 |
+
use_auth_token=TOKEN)
|
| 66 |
+
return np.load(path)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def load_sample_image_paths() -> list[pathlib.Path]:
|
| 70 |
+
image_dir = pathlib.Path('images')
|
| 71 |
+
if not image_dir.exists():
|
| 72 |
+
dataset_repo = 'hysts/sample-images-TADNE'
|
| 73 |
+
path = huggingface_hub.hf_hub_download(dataset_repo,
|
| 74 |
+
'images.tar.gz',
|
| 75 |
+
repo_type='dataset',
|
| 76 |
+
use_auth_token=TOKEN)
|
| 77 |
+
with tarfile.open(path) as f:
|
| 78 |
+
f.extractall()
|
| 79 |
+
return sorted(image_dir.glob('*'))
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def create_model() -> tf.keras.Model:
|
| 83 |
+
path = huggingface_hub.hf_hub_download('hysts/DeepDanbooru',
|
| 84 |
+
'model-resnet_custom_v3.h5',
|
| 85 |
+
use_auth_token=TOKEN)
|
| 86 |
+
model = tf.keras.models.load_model(path)
|
| 87 |
+
model = tf.keras.Model(model.input, model.layers[-4].output)
|
| 88 |
+
layer = tf.keras.layers.GlobalAveragePooling2D()
|
| 89 |
+
model = tf.keras.Sequential([model, layer])
|
| 90 |
+
return model
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def predict(image: PIL.Image.Image, model: tf.keras.Model) -> np.ndarray:
|
| 94 |
+
_, height, width, _ = model.input_shape
|
| 95 |
+
image = np.asarray(image)
|
| 96 |
+
image = tf.image.resize(image,
|
| 97 |
+
size=(height, width),
|
| 98 |
+
method=tf.image.ResizeMethod.AREA,
|
| 99 |
+
preserve_aspect_ratio=True)
|
| 100 |
+
image = image.numpy()
|
| 101 |
+
image = dd.image.transform_and_pad_image(image, width, height)
|
| 102 |
+
image = image / 255.
|
| 103 |
+
features = model.predict(image[None, ...])[0]
|
| 104 |
+
features = features.astype(float)
|
| 105 |
+
return features
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def run(
|
| 109 |
+
image: PIL.Image.Image,
|
| 110 |
+
nrows: int,
|
| 111 |
+
ncols: int,
|
| 112 |
+
image_size: int,
|
| 113 |
+
dirname: str,
|
| 114 |
+
tarball_path: pathlib.Path,
|
| 115 |
+
deepdanbooru_predictions: np.ndarray,
|
| 116 |
+
model: tf.keras.Model,
|
| 117 |
+
) -> tuple[np.ndarray, np.ndarray]:
|
| 118 |
+
features = predict(image, model)
|
| 119 |
+
distances = ((deepdanbooru_predictions - features)**2).sum(axis=1)
|
| 120 |
+
|
| 121 |
+
image_indices = np.argsort(distances)
|
| 122 |
+
|
| 123 |
+
seeds = []
|
| 124 |
+
images = []
|
| 125 |
+
with tarfile.TarFile(tarball_path) as tar_file:
|
| 126 |
+
for index in range(nrows * ncols):
|
| 127 |
+
image_index = image_indices[index]
|
| 128 |
+
seeds.append(image_index)
|
| 129 |
+
member = tar_file.getmember(f'{dirname}/{image_index:07d}.jpg')
|
| 130 |
+
with tar_file.extractfile(member) as f:
|
| 131 |
+
data = io.BytesIO(f.read())
|
| 132 |
+
image = PIL.Image.open(data)
|
| 133 |
+
image = np.asarray(image)
|
| 134 |
+
images.append(image)
|
| 135 |
+
res = np.asarray(images).reshape(nrows, ncols, image_size, image_size,
|
| 136 |
+
3).transpose(0, 2, 1, 3, 4).reshape(
|
| 137 |
+
nrows * image_size,
|
| 138 |
+
ncols * image_size, 3)
|
| 139 |
+
seeds = np.asarray(seeds).reshape(nrows, ncols)
|
| 140 |
+
|
| 141 |
+
return res, seeds
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def main():
|
| 145 |
+
gr.close_all()
|
| 146 |
+
|
| 147 |
+
args = parse_args()
|
| 148 |
+
|
| 149 |
+
image_size = 128
|
| 150 |
+
dirname = '0-99999'
|
| 151 |
+
tarball_path = download_image_tarball(image_size, dirname)
|
| 152 |
+
deepdanbooru_predictions = load_deepdanbooru_predictions(dirname)
|
| 153 |
+
|
| 154 |
+
model = create_model()
|
| 155 |
+
|
| 156 |
+
image_paths = load_sample_image_paths()
|
| 157 |
+
examples = [[path.as_posix(), 2, 5] for path in image_paths]
|
| 158 |
+
|
| 159 |
+
func = functools.partial(
|
| 160 |
+
run,
|
| 161 |
+
image_size=image_size,
|
| 162 |
+
dirname=dirname,
|
| 163 |
+
tarball_path=tarball_path,
|
| 164 |
+
deepdanbooru_predictions=deepdanbooru_predictions,
|
| 165 |
+
model=model,
|
| 166 |
+
)
|
| 167 |
+
func = functools.update_wrapper(func, run)
|
| 168 |
+
|
| 169 |
+
gr.Interface(
|
| 170 |
+
func,
|
| 171 |
+
[
|
| 172 |
+
gr.inputs.Image(type='pil', label='Input'),
|
| 173 |
+
gr.inputs.Slider(1, 10, step=1, default=2, label='Number of Rows'),
|
| 174 |
+
gr.inputs.Slider(
|
| 175 |
+
1, 10, step=1, default=5, label='Number of Columns'),
|
| 176 |
+
],
|
| 177 |
+
[
|
| 178 |
+
gr.outputs.Image(type='numpy', label='Output'),
|
| 179 |
+
gr.outputs.Dataframe(type='numpy', label='Seed'),
|
| 180 |
+
],
|
| 181 |
+
examples=examples,
|
| 182 |
+
title=TITLE,
|
| 183 |
+
description=DESCRIPTION,
|
| 184 |
+
article=ARTICLE,
|
| 185 |
+
theme=args.theme,
|
| 186 |
+
allow_screenshot=args.allow_screenshot,
|
| 187 |
+
allow_flagging=args.allow_flagging,
|
| 188 |
+
live=args.live,
|
| 189 |
+
).launch(
|
| 190 |
+
enable_queue=args.enable_queue,
|
| 191 |
+
server_port=args.port,
|
| 192 |
+
share=args.share,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
if __name__ == '__main__':
|
| 197 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pillow==9.1.0
|
| 2 |
+
tensorflow==2.8.0
|
| 3 |
+
git+https://github.com/KichangKim/DeepDanbooru@v3-20200915-sgd-e30#egg=deepdanbooru
|