Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +148 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import necessary libraries
|
| 2 |
+
import nest_asyncio
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import requests
|
| 5 |
+
from bs4 import BeautifulSoup
|
| 6 |
+
from huggingface_hub import InferenceClient
|
| 7 |
+
from langchain.chains import RAGChain, RunnablePassthrough, LLMChain
|
| 8 |
+
from langchain.retrievers import FaissRetriever
|
| 9 |
+
from langchain.prompts import PromptTemplate
|
| 10 |
+
from langchain.wrappers import HuggingFacePipeline
|
| 11 |
+
from langchain.indexing import AsyncChromiumLoader, Html2TextTransformer, CharacterTextSplitter, FAISS, HuggingFaceEmbeddings
|
| 12 |
+
|
| 13 |
+
# Apply nest_asyncio for asynchronous operations in environments like Jupyter notebooks
|
| 14 |
+
nest_asyncio.apply()
|
| 15 |
+
|
| 16 |
+
# Initialize the InferenceClient with the specified model
|
| 17 |
+
client = InferenceClient(
|
| 18 |
+
"mistralai/Mistral-7B-Instruct-v0.1"
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Set up a prompt template for the model (customize as needed)
|
| 22 |
+
prompt_template = PromptTemplate()
|
| 23 |
+
|
| 24 |
+
# Define the list of articles to index
|
| 25 |
+
articles = [
|
| 26 |
+
"https://www.fantasypros.com/2023/11/rival-fantasy-nfl-week-10/",
|
| 27 |
+
"https://www.fantasypros.com/2023/11/5-stats-to-know-before-setting-your-fantasy-lineup-week-10/",
|
| 28 |
+
"https://www.fantasypros.com/2023/11/nfl-week-10-sleeper-picks-player-predictions-2023/",
|
| 29 |
+
"https://www.fantasypros.com/2023/11/nfl-dfs-week-10-stacking-advice-picks-2023-fantasy-football/",
|
| 30 |
+
"https://www.fantasypros.com/2023/11/players-to-buy-low-sell-high-trade-advice-2023-fantasy-football/"
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
# Scrapes the blogs above
|
| 34 |
+
loader = AsyncChromiumLoader(articles)
|
| 35 |
+
docs = loader.load()
|
| 36 |
+
|
| 37 |
+
# Converts HTML to plain text
|
| 38 |
+
html2text = Html2TextTransformer()
|
| 39 |
+
docs_transformed = html2text.transform_documents(docs)
|
| 40 |
+
|
| 41 |
+
# Chunk text
|
| 42 |
+
text_splitter = CharacterTextSplitter(chunk_size=100,
|
| 43 |
+
chunk_overlap=10)
|
| 44 |
+
chunked_documents = text_splitter.split_documents(docs_transformed)
|
| 45 |
+
|
| 46 |
+
# Load chunked documents into the FAISS index
|
| 47 |
+
db = FAISS.from_documents(chunked_documents,
|
| 48 |
+
HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2'))
|
| 49 |
+
|
| 50 |
+
retriever = db.as_retriever()
|
| 51 |
+
|
| 52 |
+
# Create the RAG chain by combining the language model with the retriever
|
| 53 |
+
rag_chain = ({"context": retriever, "question": RunnablePassthrough()} | LLMChain)
|
| 54 |
+
|
| 55 |
+
# Define the generation function for the Gradio interface
|
| 56 |
+
def generate(
|
| 57 |
+
prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1,
|
| 58 |
+
):
|
| 59 |
+
temperature = float(temperature)
|
| 60 |
+
if temperature < 1e-2:
|
| 61 |
+
temperature = 1e-2
|
| 62 |
+
top_p = float(top_p)
|
| 63 |
+
|
| 64 |
+
generate_kwargs = dict(
|
| 65 |
+
temperature=temperature,
|
| 66 |
+
max_new_tokens=max_new_tokens,
|
| 67 |
+
top_p=top_p,
|
| 68 |
+
repetition_penalty=repetition_penalty,
|
| 69 |
+
do_sample=True,
|
| 70 |
+
seed=42,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
formatted_prompt = "<s>"
|
| 74 |
+
for user_prompt, bot_response in history:
|
| 75 |
+
formatted_prompt += f"[INST] {user_prompt} [/INST]"
|
| 76 |
+
formatted_prompt += f" {bot_response}</s> "
|
| 77 |
+
formatted_prompt += f"[INST] {prompt} [/INST]"
|
| 78 |
+
|
| 79 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
| 80 |
+
output = ""
|
| 81 |
+
|
| 82 |
+
for response in stream:
|
| 83 |
+
output += response.token.text
|
| 84 |
+
yield output
|
| 85 |
+
return output
|
| 86 |
+
|
| 87 |
+
# Define additional input components for the Gradio interface
|
| 88 |
+
additional_inputs = [
|
| 89 |
+
gr.Slider(
|
| 90 |
+
label="Temperature",
|
| 91 |
+
value=0.7,
|
| 92 |
+
minimum=0.0,
|
| 93 |
+
maximum=1.0,
|
| 94 |
+
step=0.05,
|
| 95 |
+
interactive=True,
|
| 96 |
+
info="Higher values produce more diverse outputs",
|
| 97 |
+
),
|
| 98 |
+
gr.Slider(
|
| 99 |
+
label="Max new tokens",
|
| 100 |
+
value=256,
|
| 101 |
+
minimum=0,
|
| 102 |
+
maximum=1024,
|
| 103 |
+
step=64,
|
| 104 |
+
interactive=True,
|
| 105 |
+
info="The maximum number of new tokens",
|
| 106 |
+
),
|
| 107 |
+
gr.Slider(
|
| 108 |
+
label="Top-p (nucleus sampling)",
|
| 109 |
+
value=0.95,
|
| 110 |
+
minimum=0.0,
|
| 111 |
+
maximum=1,
|
| 112 |
+
step=0.05,
|
| 113 |
+
interactive=True,
|
| 114 |
+
info="Higher values sample more low-probability tokens",
|
| 115 |
+
),
|
| 116 |
+
gr.Slider(
|
| 117 |
+
label="Repetition penalty",
|
| 118 |
+
value=1.1,
|
| 119 |
+
minimum=1.0,
|
| 120 |
+
maximum=2.0,
|
| 121 |
+
step=0.05,
|
| 122 |
+
interactive=True,
|
| 123 |
+
info="Penalize repeated tokens",
|
| 124 |
+
)
|
| 125 |
+
]
|
| 126 |
+
|
| 127 |
+
# Define CSS for styling the Gradio interface
|
| 128 |
+
css = """
|
| 129 |
+
#mkd {
|
| 130 |
+
height: 500px;
|
| 131 |
+
overflow: auto;
|
| 132 |
+
border: 1px solid #ccc;
|
| 133 |
+
}
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
# Create the Gradio interface with the chat component
|
| 137 |
+
with gr.Blocks(css=css) as demo:
|
| 138 |
+
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
|
| 139 |
+
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. 📜<h3><center>")
|
| 140 |
+
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. 📚<h3><center>")
|
| 141 |
+
gr.ChatInterface(
|
| 142 |
+
generate,
|
| 143 |
+
additional_inputs=additional_inputs,
|
| 144 |
+
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]],
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# Launch the Gradio interface with debugging enabled
|
| 148 |
+
demo.queue().launch(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==2.1.4
|
| 2 |
+
requests==2.26.0
|
| 3 |
+
beautifulsoup4==4.10.0
|
| 4 |
+
huggingface-hub==0.0.17
|
| 5 |
+
nest-asyncio==1.5.1
|
| 6 |
+
sentence-transformers==2.1.0
|
| 7 |
+
torch==1.9.0
|
| 8 |
+
transformers==4.11.3
|
| 9 |
+
langchain==0.6.2
|