Spaces:
Sleeping
Sleeping
File size: 8,569 Bytes
9f98759 1d5bf01 9f98759 1d5bf01 9f98759 1d5bf01 9f98759 1d5bf01 9f98759 1d5bf01 9f98759 1d5bf01 9f98759 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
os.environ['ANONYMIZED_TELEMETRY'] = 'False'
import zipfile
import chromadb
from sentence_transformers import SentenceTransformer
import gradio as gr
from fastapi import FastAPI
from pydantic import BaseModel
# Extract and load database
DB_PATH = "./medqa_db"
if not os.path.exists(DB_PATH) and os.path.exists("./medqa_db.zip"):
print("π¦ Extracting database...")
with zipfile.ZipFile("./medqa_db.zip", 'r') as z:
z.extractall(".")
print("β
Database extracted")
print("π Loading ChromaDB...")
client = chromadb.PersistentClient(path=DB_PATH)
collection = client.get_collection("medqa")
print(f"β
Loaded {collection.count()} questions")
print("π§ Loading MedCPT model...")
model = SentenceTransformer('ncbi/MedCPT-Query-Encoder')
print("β
Model ready")
# ============================================================================
# NEW: Deduplication function
# ============================================================================
def deduplicate_results(results, target_count):
"""
Remove duplicate questions based on:
1. High text similarity (>0.92) - catches near-exact duplicates
2. Same answer + moderate similarity (>0.85) - catches conceptual duplicates
"""
if not results['documents'][0]:
return results
documents = results['documents'][0]
metadatas = results['metadatas'][0]
distances = results['distances'][0]
selected_indices = []
for i in range(len(documents)):
is_duplicate = False
current_answer = metadatas[i].get('answer', '')
# Compare to already-selected results
for j in selected_indices:
selected_answer = metadatas[j].get('answer', '')
# Calculate similarity between questions
# Lower distance = higher similarity
dist_diff = abs(distances[i] - distances[j])
# Rule 1: Very similar questions (likely exact/near-exact duplicates)
if dist_diff < 0.08: # Roughly equivalent to >0.92 similarity
is_duplicate = True
break
# Rule 2: Same answer + similar question (conceptual duplicates)
if current_answer == selected_answer and dist_diff < 0.15: # ~0.85 similarity
is_duplicate = True
break
if not is_duplicate:
selected_indices.append(i)
# Stop when we have enough unique results
if len(selected_indices) >= target_count:
break
# Return filtered results in same format
return {
'documents': [[documents[i] for i in selected_indices]],
'metadatas': [[metadatas[i] for i in selected_indices]],
'distances': [[distances[i] for i in selected_indices]],
'ids': [[results['ids'][0][i] for i in selected_indices]] if 'ids' in results else None
}
# ============================================================================
# MODIFIED: Search function with deduplication
# ============================================================================
def search(query, num_results=3, source_filter=None):
emb = model.encode(query).tolist()
# Apply source filter if specified
where_clause = None
if source_filter and source_filter != "all":
where_clause = {"source": source_filter}
# Over-fetch to ensure we get enough unique results
fetch_count = min(num_results * 4, 50) # Fetch 4x but cap at 50
results = collection.query(
query_embeddings=[emb],
n_results=fetch_count,
where=where_clause
)
# Deduplicate and return only requested number
return deduplicate_results(results, num_results)
# Enhanced Gradio UI
def ui_search(query, num_results=3, source_filter="all"):
if not query.strip():
return "π‘ Enter a medical query to search"
try:
r = search(query, num_results, source_filter if source_filter != "all" else None)
if not r['documents'][0]:
return "β No results found"
out = f"π Found {len(r['documents'][0])} unique results\n\n"
for i in range(len(r['documents'][0])):
source = r['metadatas'][0][i].get('source', 'unknown')
distance = r['distances'][0][i]
similarity = 1 - distance
# Source emoji
if source == 'medgemini':
source_icon = "π¬"
source_name = "Med-Gemini"
elif source.startswith('medqa_'):
source_icon = "π"
split = source.replace('medqa_', '').upper()
source_name = f"MedQA {split}"
else:
source_icon = "π"
source_name = source.upper()
out += f"\n{'='*70}\n"
out += f"{source_icon} Result {i+1} | {source_name} | Similarity: {similarity:.3f}\n"
out += f"{'='*70}\n\n"
out += r['documents'][0][i]
# Show answer
answer = r['metadatas'][0][i].get('answer', 'N/A')
out += f"\n\nβ
CORRECT ANSWER: {answer}\n"
# Show explanation if available (Med-Gemini)
explanation = r['metadatas'][0][i].get('explanation', '')
if explanation and explanation.strip():
out += f"\nπ‘ EXPLANATION:\n{explanation}\n"
out += "\n"
return out
except Exception as e:
return f"β Error: {e}"
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), title="MedQA Search") as demo:
gr.Markdown("""
# π₯ MedQA Semantic Search
Search across **Med-Gemini** (expert explanations) and **MedQA** (USMLE questions) databases.
Uses medical-specific embeddings (MedCPT) for accurate retrieval.
β¨ **New**: Automatic deduplication removes similar/duplicate questions
""")
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(
label="Medical Query",
placeholder="e.g., hyponatremia, myocardial infarction, diabetes management...",
lines=2
)
with gr.Column(scale=1):
num_results = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Number of Results"
)
with gr.Row():
source_filter = gr.Radio(
choices=["all", "medgemini", "medqa_train", "medqa_dev", "medqa_test"],
value="all",
label="Filter by Source"
)
search_btn = gr.Button("π Search", variant="primary", size="lg")
output = gr.Textbox(
label="Search Results",
lines=25,
max_lines=50
)
search_btn.click(
fn=ui_search,
inputs=[query_input, num_results, source_filter],
outputs=output
)
query_input.submit(
fn=ui_search,
inputs=[query_input, num_results, source_filter],
outputs=output
)
gr.Markdown("""
### π Database Info
**Med-Gemini**: Expert-relabeled questions with detailed explanations
**MedQA**: USMLE-style questions (Train/Dev/Test splits)
**Total Questions**: Use the database you built with `build_combined_db.py`
""")
gr.Examples(
examples=[
["hyponatremia", 3, "all"],
["myocardial infarction treatment", 2, "medgemini"],
["diabetes complications", 3, "all"],
["antibiotics for pneumonia", 2, "medqa_train"]
],
inputs=[query_input, num_results, source_filter]
)
# FastAPI
app = FastAPI()
class SearchRequest(BaseModel):
query: str
num_results: int = 3
source_filter: str = None
@app.post("/search_medqa")
def api_search(req: SearchRequest):
r = search(req.query, req.num_results, req.source_filter)
return {"results": [{
"result_number": i+1,
"question": r['documents'][0][i],
"answer": r['metadatas'][0][i].get('answer', 'N/A'),
"source": r['metadatas'][0][i].get('source', 'unknown'),
"similarity": 1 - r['distances'][0][i]
} for i in range(len(r['documents'][0]))]}
app = gr.mount_gradio_app(app, demo, path="/")
# Launch
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |