File size: 8,569 Bytes
9f98759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5bf01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f98759
 
 
 
 
 
 
 
1d5bf01
 
 
 
9f98759
1d5bf01
9f98759
 
1d5bf01
 
 
9f98759
 
 
 
 
 
 
 
 
 
 
 
1d5bf01
9f98759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5bf01
 
9f98759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
os.environ['ANONYMIZED_TELEMETRY'] = 'False'

import zipfile
import chromadb
from sentence_transformers import SentenceTransformer
import gradio as gr
from fastapi import FastAPI
from pydantic import BaseModel

# Extract and load database
DB_PATH = "./medqa_db"
if not os.path.exists(DB_PATH) and os.path.exists("./medqa_db.zip"):
    print("πŸ“¦ Extracting database...")
    with zipfile.ZipFile("./medqa_db.zip", 'r') as z:
        z.extractall(".")
    print("βœ… Database extracted")

print("πŸ”Œ Loading ChromaDB...")
client = chromadb.PersistentClient(path=DB_PATH)
collection = client.get_collection("medqa")
print(f"βœ… Loaded {collection.count()} questions")

print("🧠 Loading MedCPT model...")
model = SentenceTransformer('ncbi/MedCPT-Query-Encoder')
print("βœ… Model ready")

# ============================================================================
# NEW: Deduplication function
# ============================================================================
def deduplicate_results(results, target_count):
    """
    Remove duplicate questions based on:
    1. High text similarity (>0.92) - catches near-exact duplicates
    2. Same answer + moderate similarity (>0.85) - catches conceptual duplicates
    """
    if not results['documents'][0]:
        return results
    
    documents = results['documents'][0]
    metadatas = results['metadatas'][0]
    distances = results['distances'][0]
    
    selected_indices = []
    
    for i in range(len(documents)):
        is_duplicate = False
        current_answer = metadatas[i].get('answer', '')
        
        # Compare to already-selected results
        for j in selected_indices:
            selected_answer = metadatas[j].get('answer', '')
            
            # Calculate similarity between questions
            # Lower distance = higher similarity
            dist_diff = abs(distances[i] - distances[j])
            
            # Rule 1: Very similar questions (likely exact/near-exact duplicates)
            if dist_diff < 0.08:  # Roughly equivalent to >0.92 similarity
                is_duplicate = True
                break
            
            # Rule 2: Same answer + similar question (conceptual duplicates)
            if current_answer == selected_answer and dist_diff < 0.15:  # ~0.85 similarity
                is_duplicate = True
                break
        
        if not is_duplicate:
            selected_indices.append(i)
            
            # Stop when we have enough unique results
            if len(selected_indices) >= target_count:
                break
    
    # Return filtered results in same format
    return {
        'documents': [[documents[i] for i in selected_indices]],
        'metadatas': [[metadatas[i] for i in selected_indices]],
        'distances': [[distances[i] for i in selected_indices]],
        'ids': [[results['ids'][0][i] for i in selected_indices]] if 'ids' in results else None
    }

# ============================================================================
# MODIFIED: Search function with deduplication
# ============================================================================
def search(query, num_results=3, source_filter=None):
    emb = model.encode(query).tolist()
    
    # Apply source filter if specified
    where_clause = None
    if source_filter and source_filter != "all":
        where_clause = {"source": source_filter}
    
    # Over-fetch to ensure we get enough unique results
    fetch_count = min(num_results * 4, 50)  # Fetch 4x but cap at 50
    
    results = collection.query(
        query_embeddings=[emb], 
        n_results=fetch_count,
        where=where_clause
    )
    
    # Deduplicate and return only requested number
    return deduplicate_results(results, num_results)

# Enhanced Gradio UI
def ui_search(query, num_results=3, source_filter="all"):
    if not query.strip():
        return "πŸ’‘ Enter a medical query to search"
    
    try:
        r = search(query, num_results, source_filter if source_filter != "all" else None)
        
        if not r['documents'][0]:
            return "❌ No results found"
        
        out = f"πŸ” Found {len(r['documents'][0])} unique results\n\n"
        
        for i in range(len(r['documents'][0])):
            source = r['metadatas'][0][i].get('source', 'unknown')
            distance = r['distances'][0][i]
            similarity = 1 - distance
            
            # Source emoji
            if source == 'medgemini':
                source_icon = "πŸ”¬"
                source_name = "Med-Gemini"
            elif source.startswith('medqa_'):
                source_icon = "πŸ“š"
                split = source.replace('medqa_', '').upper()
                source_name = f"MedQA {split}"
            else:
                source_icon = "πŸ“„"
                source_name = source.upper()
            
            out += f"\n{'='*70}\n"
            out += f"{source_icon} Result {i+1} | {source_name} | Similarity: {similarity:.3f}\n"
            out += f"{'='*70}\n\n"
            out += r['documents'][0][i]
            
            # Show answer
            answer = r['metadatas'][0][i].get('answer', 'N/A')
            out += f"\n\nβœ… CORRECT ANSWER: {answer}\n"
            
            # Show explanation if available (Med-Gemini)
            explanation = r['metadatas'][0][i].get('explanation', '')
            if explanation and explanation.strip():
                out += f"\nπŸ’‘ EXPLANATION:\n{explanation}\n"
            
            out += "\n"
        
        return out
    
    except Exception as e:
        return f"❌ Error: {e}"

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), title="MedQA Search") as demo:
    gr.Markdown("""
    # πŸ₯ MedQA Semantic Search
    
    Search across **Med-Gemini** (expert explanations) and **MedQA** (USMLE questions) databases.
    Uses medical-specific embeddings (MedCPT) for accurate retrieval.
    
    ✨ **New**: Automatic deduplication removes similar/duplicate questions
    """)
    
    with gr.Row():
        with gr.Column(scale=3):
            query_input = gr.Textbox(
                label="Medical Query",
                placeholder="e.g., hyponatremia, myocardial infarction, diabetes management...",
                lines=2
            )
        with gr.Column(scale=1):
            num_results = gr.Slider(
                minimum=1,
                maximum=10,
                value=3,
                step=1,
                label="Number of Results"
            )
    
    with gr.Row():
        source_filter = gr.Radio(
            choices=["all", "medgemini", "medqa_train", "medqa_dev", "medqa_test"],
            value="all",
            label="Filter by Source"
        )
    
    search_btn = gr.Button("πŸ” Search", variant="primary", size="lg")
    
    output = gr.Textbox(
        label="Search Results",
        lines=25,
        max_lines=50
    )
    
    search_btn.click(
        fn=ui_search,
        inputs=[query_input, num_results, source_filter],
        outputs=output
    )
    
    query_input.submit(
        fn=ui_search,
        inputs=[query_input, num_results, source_filter],
        outputs=output
    )
    
    gr.Markdown("""
    ### πŸ“Š Database Info
    
    **Med-Gemini**: Expert-relabeled questions with detailed explanations  
    **MedQA**: USMLE-style questions (Train/Dev/Test splits)
    
    **Total Questions**: Use the database you built with `build_combined_db.py`
    """)
    
    gr.Examples(
        examples=[
            ["hyponatremia", 3, "all"],
            ["myocardial infarction treatment", 2, "medgemini"],
            ["diabetes complications", 3, "all"],
            ["antibiotics for pneumonia", 2, "medqa_train"]
        ],
        inputs=[query_input, num_results, source_filter]
    )

# FastAPI
app = FastAPI()

class SearchRequest(BaseModel):
    query: str
    num_results: int = 3
    source_filter: str = None

@app.post("/search_medqa")
def api_search(req: SearchRequest):
    r = search(req.query, req.num_results, req.source_filter)
    return {"results": [{
        "result_number": i+1,
        "question": r['documents'][0][i],
        "answer": r['metadatas'][0][i].get('answer', 'N/A'),
        "source": r['metadatas'][0][i].get('source', 'unknown'),
        "similarity": 1 - r['distances'][0][i]
    } for i in range(len(r['documents'][0]))]}

app = gr.mount_gradio_app(app, demo, path="/")

# Launch
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)