import os os.environ['ANONYMIZED_TELEMETRY'] = 'False' import zipfile import chromadb from sentence_transformers import SentenceTransformer import gradio as gr from fastapi import FastAPI from pydantic import BaseModel import re # Extract and load database DB_PATH = "./medqa_db" if not os.path.exists(DB_PATH) and os.path.exists("./medqa_db.zip"): print("šŸ“¦ Extracting database...") with zipfile.ZipFile("./medqa_db.zip", 'r') as z: z.extractall(".") print("āœ… Database extracted") print("šŸ”Œ Loading ChromaDB...") client = chromadb.PersistentClient(path=DB_PATH) collection = client.get_collection("medqa") print(f"āœ… Loaded {collection.count()} questions") print("🧠 Loading MedCPT model...") model = SentenceTransformer('ncbi/MedCPT-Query-Encoder') print("āœ… Model ready") # ============================================================================ # Deduplication function # ============================================================================ def deduplicate_results(results, target_count): """ Remove duplicate questions based on: 1. High text similarity (>0.92) - catches near-exact duplicates 2. Same answer + moderate similarity (>0.85) - catches conceptual duplicates """ if not results['documents'][0]: return results documents = results['documents'][0] metadatas = results['metadatas'][0] distances = results['distances'][0] selected_indices = [] for i in range(len(documents)): is_duplicate = False current_answer = metadatas[i].get('answer', '') for j in selected_indices: selected_answer = metadatas[j].get('answer', '') dist_diff = abs(distances[i] - distances[j]) if dist_diff < 0.08: is_duplicate = True break if current_answer == selected_answer and dist_diff < 0.15: is_duplicate = True break if not is_duplicate: selected_indices.append(i) if len(selected_indices) >= target_count: break return { 'documents': [[documents[i] for i in selected_indices]], 'metadatas': [[metadatas[i] for i in selected_indices]], 'distances': [[distances[i] for i in selected_indices]], 'ids': [[results['ids'][0][i] for i in selected_indices]] if 'ids' in results else None } # ============================================================================ # Search function with deduplication # ============================================================================ def search(query, num_results=3, source_filter=None): emb = model.encode(query).tolist() where_clause = None if source_filter and source_filter != "all": where_clause = {"source": source_filter} fetch_count = min(num_results * 4, 50) results = collection.query( query_embeddings=[emb], n_results=fetch_count, where=where_clause ) return deduplicate_results(results, num_results) # ============================================================================ # Parser to extract question structure # ============================================================================ def parse_question_document(doc_text, metadata): """Extract question and choices from document text - NO TRUNCATION.""" lines = doc_text.split('\n') question_lines = [] options_started = False options = {} for line in lines: line = line.strip() if not line: continue # Check if this is an option line (A., B., C., etc.) option_match = re.match(r'^([A-E])[\.\)]\s*(.+)$', line) if option_match: options_started = True letter = option_match.group(1) text = option_match.group(2).strip() options[letter] = text elif not options_started: question_lines.append(line) # Reconstruct FULL question text - no truncation question_text = ' '.join(question_lines).strip() answer_idx = metadata.get('answer_idx', 'N/A') answer_text = metadata.get('answer', 'N/A') # If answer_text is just the letter, map it to the actual option text if answer_text in options: answer_text = options[answer_text] return { 'question': question_text, 'choices': options, 'correct_answer_letter': answer_idx, 'correct_answer_text': answer_text } # ============================================================================ # Enhanced Gradio UI # ============================================================================ def ui_search(query, num_results=3, source_filter="all"): if not query.strip(): return "šŸ’” Enter a medical query to search" try: r = search(query, num_results, source_filter if source_filter != "all" else None) if not r['documents'][0]: return "āŒ No results found" out = f"šŸ” Found {len(r['documents'][0])} unique results\n\n" for i in range(len(r['documents'][0])): source = r['metadatas'][0][i].get('source', 'unknown') distance = r['distances'][0][i] similarity = 1 - distance # Source emoji if source == 'medgemini': source_icon = "šŸ”¬" source_name = "Med-Gemini" elif source.startswith('medqa_'): source_icon = "šŸ“š" split = source.replace('medqa_', '').upper() source_name = f"MedQA {split}" else: source_icon = "šŸ“„" source_name = source.upper() out += f"\n{'='*70}\n" out += f"{source_icon} Result {i+1} | {source_name} | Similarity: {similarity:.3f}\n" out += f"{'='*70}\n\n" out += r['documents'][0][i] answer = r['metadatas'][0][i].get('answer', 'N/A') out += f"\n\nāœ… CORRECT ANSWER: {answer}\n" explanation = r['metadatas'][0][i].get('explanation', '') if explanation and explanation.strip(): out += f"\nšŸ’” EXPLANATION:\n{explanation}\n" out += "\n" return out except Exception as e: return f"āŒ Error: {e}" # Create Gradio interface with gr.Blocks(theme=gr.themes.Soft(), title="MedQA Search") as demo: gr.Markdown(""" # šŸ„ MedQA Semantic Search Search across **Med-Gemini** (expert explanations) and **MedQA** (USMLE questions) databases. Uses medical-specific embeddings (MedCPT) for accurate retrieval. ✨ **Features**: Automatic deduplication, structured output for AI integration """) with gr.Row(): with gr.Column(scale=3): query_input = gr.Textbox( label="Medical Query", placeholder="e.g., hyponatremia, myocardial infarction, diabetes management...", lines=2 ) with gr.Column(scale=1): num_results = gr.Slider( minimum=1, maximum=10, value=3, step=1, label="Number of Results" ) with gr.Row(): source_filter = gr.Radio( choices=["all", "medgemini", "medqa_train", "medqa_dev", "medqa_test"], value="all", label="Filter by Source" ) search_btn = gr.Button("šŸ” Search", variant="primary", size="lg") output = gr.Textbox( label="Search Results", lines=25, max_lines=50 ) search_btn.click( fn=ui_search, inputs=[query_input, num_results, source_filter], outputs=output ) query_input.submit( fn=ui_search, inputs=[query_input, num_results, source_filter], outputs=output ) gr.Markdown(""" ### šŸ“Š Database Info **Med-Gemini**: Expert-relabeled questions with detailed explanations **MedQA**: USMLE-style questions (Train/Dev/Test splits) **Total Questions**: ~10,000+ USMLE-style questions """) gr.Examples( examples=[ ["hyponatremia", 3, "all"], ["myocardial infarction treatment", 2, "medgemini"], ["diabetes complications", 3, "all"], ["antibiotics for pneumonia", 2, "medqa_train"] ], inputs=[query_input, num_results, source_filter] ) # ============================================================================ # FastAPI with structured JSON output (for OpenAI integration) # ============================================================================ app = FastAPI() class SearchRequest(BaseModel): query: str num_results: int = 3 source_filter: str = None @app.post("/search_medqa") def api_search(req: SearchRequest): """ Search MedQA and return structured exemplars. Returns COMPLETE question text with no truncation. """ r = search(req.query, req.num_results, req.source_filter) if not r['documents'][0]: return {"results": []} results = [] for i in range(len(r['documents'][0])): doc_text = r['documents'][0][i] metadata = r['metadatas'][0][i] # Parse the document into structured format parsed = parse_question_document(doc_text, metadata) # Build complete result object result = { "result_number": i + 1, "question": parsed['question'], # FULL question text "choices": parsed['choices'], "correct_answer": parsed['correct_answer_letter'], "correct_answer_text": parsed['correct_answer_text'], "explanation": metadata.get('explanation', ''), "has_explanation": bool(metadata.get('explanation', '').strip()), "source": metadata.get('source', 'unknown'), "exam_type": metadata.get('exam_type', 'unknown'), "split": metadata.get('split', 'unknown'), "similarity": round(1 - r['distances'][0][i], 3), "metamap_phrases": metadata.get('metamap_phrases', '') } results.append(result) return {"results": results} app = gr.mount_gradio_app(app, demo, path="/") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)