Spaces:
Running
Running
File size: 1,431 Bytes
c569b9f 5ae76ab c569b9f 5ae76ab c569b9f 464bbb5 5ae76ab 464bbb5 5ae76ab 464bbb5 5ae76ab 464bbb5 5ae76ab 464bbb5 5ae76ab 464bbb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
# import torch
# from your_pix2pixhd_code import YourPix2PixHDModel, load_image, tensor2im # Adapt these imports
# # --- 1. Load your pix2pixHD model ---
# # You'll need to adapt this part to your specific model loading logic
# # This is a simplified example
# model = YourPix2PixHDModel()
# model.load_state_dict(torch.load('models/your_pix2pixhd_model.pth'))
# model.eval()
# --- 2. Define the prediction function ---
def predict(input_image):
return 255 - input_image
# # Pre-process the input image
# processed_image = load_image(input_image)
# # Run inference
# with torch.no_grad():
# generated_image_tensor = model(processed_image)
# # Post-process the output tensor to an image
# output_image = tensor2im(generated_image_tensor)
# return output_image
# --- 3. Create the Gradio Interface ---
title = "pix2pixHD Image-to-Image Translation"
description = "Upload an image to see the pix2pixHD model in action."
article = "<p style='text-align: center'>Model based on the <a href='https://github.com/NVIDIA/pix2pixHD' target='_blank'>pix2pixHD repository</a>.</p>"
gr.Interface(
fn=predict,
inputs=gr.Image(type="numpy", label="Input Image"),
outputs=gr.Image(type="numpy", label="Output Image"),
title=title,
description=description,
article=article,
examples=[["your_example_image.jpg"]] # Optional: add example images
).launch() |