Spaces:
Running
Running
File size: 8,254 Bytes
86c90a3 c3f75db d6c0ea5 4df3bee c3f75db 86c90a3 4df3bee d6c0ea5 86c90a3 d6c0ea5 86c90a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import numpy as np
import mediapipe as mp
from PIL import Image
import PIL
import scipy
import scipy.ndimage
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5, model_selection=0)
def aligns(pil_image,enable_padding=True,output_size=512,model_type="dlib",max_people=7):
w,h = pil_image.size
scale = 1
if min(w,h) > output_size*2:
scale = min(w,h) / (output_size*2)
new_w = int(w/scale)
new_h = int(h/scale)
pil_image = pil_image.resize((new_w,new_h),PIL.Image.BILINEAR)
numpy_im = np.array(pil_image)
#Find the locations of faces
locations,context = get_locations(numpy_im,model_type)#face_recognition.face_locations(numpy_im)
n_found = len(locations)
print("Faces found",n_found)
if (n_found == 0):
return []
#How many are we going to return?
n_to_return = min(n_found,max_people)
#Return the largest ones
areas = [(l[2] - l[0])*(l[1] - l[3]) for l in locations]
indices = np.argpartition(areas, -n_to_return)[-n_to_return:]
#Find the landmarks
face_landmarks_list = get_landmarks(numpy_im,[locations[i] for i in indices],context,model_type)#face_recognition.face_landmarks(numpy_im,[locations[i]])
#Package them up
to_return = []
for face in face_landmarks_list:
im,quad = image_align(pil_image,face,enable_padding=enable_padding,output_size=output_size,transform_size=output_size)
to_return.append((im,quad*scale))
#Return them
return to_return
def get_landmarks(numpy_array,locations,context,model_type="dlib"):
'''
model_type can be "dlib" or "mediapipe"
context is the second result from get_locations
'''
assert(model_type in ["dlib","mediapipe"])
if model_type == "dlib":
return face_recognition.face_landmarks(numpy_array,locations)
else:
return [context[tuple(l)] for l in locations]
def landmarks_from_result(result,np_array):
keypoint_names = ["left_eye", "right_eye", "nose" ,"mouth", "left_ear", "right_ear"]
landmarks = {}
for i,k in enumerate(result.location_data.relative_keypoints):
x = round(k.x * np_array.shape[1])
y = round(k.y * np_array.shape[0])
landmarks[keypoint_names[i]] = np.array([x,y])
return landmarks
def get_locations(numpy_array,model_type="dlib"):
'''
model_type can be "dlib" or "mediapipe"
returns face locations and a context for fast landmark finding
'''
assert(model_type in ["dlib","mediapipe"])
if model_type == "dlib":
return face_recognition.face_locations(numpy_array),None
else:
results = face_detection.process(np.array(numpy_array))
to_return = None
im_h,im_w = numpy_array.shape[:2]
box_list = []
landmarks = {}
if results.detections is None:
return box_list,landmarks
for result in results.detections:
x = round(result.location_data.relative_bounding_box.xmin*im_w)
y = round(result.location_data.relative_bounding_box.ymin*im_h)
w = round(result.location_data.relative_bounding_box.width*im_w)
h = round(result.location_data.relative_bounding_box.height*im_h)
box_list.append([x,y,x+w-1,y+h-1])
landmarks[(x,y,x+w-1,y+h-1)] = landmarks_from_result(result,numpy_array)
return box_list,landmarks
def align(pil_image,enable_padding=True,output_size=512,model_type="dlib"):
w,h = pil_image.size
scale = 1
if min(w,h) > output_size*2:
scale = min(w,h) / (output_size*2)
new_w = int(w/scale)
new_h = int(h/scale)
pil_image = pil_image.resize((new_w,new_h),PIL.Image.BILINEAR)
numpy_im = np.array(pil_image)
locations,context = get_locations(numpy_im,model_type)#face_recognition.face_locations(numpy_im)
if (len(locations) == 0):
return None
areas = [(l[2] - l[0])*(l[1] - l[3]) for l in locations]
i = np.argmax(areas)
face_landmarks_list = get_landmarks(numpy_im,[locations[i]],context,model_type)#face_recognition.face_landmarks(numpy_im,[locations[i]])
im,quad = image_align(Image.fromarray(numpy_im),face_landmarks_list[0],enable_padding=enable_padding,output_size=output_size,transform_size=4*output_size)
return im,quad*scale
def image_align(img, lm, output_size=1024, transform_size=4096, enable_padding=True, x_scale=1, y_scale=1, em_scale=0.1, alpha=False):
# Align function from FFHQ dataset pre-processing step
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
# Compute the land marks differently depending on what face finding model has been used
if type(lm["left_eye"]) == np.ndarray and lm["left_eye"].size == 2:
#Media pipe
eye_left = lm["left_eye"]
eye_right = lm["right_eye"]
mouth_avg = lm["mouth"]
else:
#DLIB
eye_left = np.mean(lm["left_eye"], axis=0)
eye_right = np.mean(lm["right_eye"], axis=0)
mouth_avg = (np.mean( lm["top_lip"],axis=0) + np.mean(lm["bottom_lip"],axis=0)) * 0.5
# Calculate auxiliary vectors.
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
x *= x_scale
y = np.flipud(x) * [-y_scale, y_scale]
c = eye_avg + eye_to_mouth * em_scale
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) #Quad means box
qsize = np.hypot(*x) * 2
original_quad = np.copy(quad)
# Load in-the-wild image.
#img = img.convert('RGBA').convert('RGB') #I've already taken care of this
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = np.uint8(np.clip(np.rint(img), 0, 255))
if alpha:
mask = 1-np.clip(3.0 * mask, 0.0, 1.0)
mask = np.uint8(np.clip(np.rint(mask*255), 0, 255))
img = np.concatenate((img, mask), axis=2)
img = PIL.Image.fromarray(img, 'RGBA')
else:
img = PIL.Image.fromarray(img, 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.LANCZOS)
# Save aligned image.
return img,original_quad |