File size: 6,742 Bytes
e8c13db
 
 
 
30eefab
e8c13db
 
 
 
30eefab
08c9ad5
e8c13db
 
 
30eefab
e8c13db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30eefab
e8c13db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30eefab
e8c13db
 
 
 
 
 
 
 
 
30eefab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c13db
 
 
 
 
30eefab
e8c13db
 
30eefab
 
e8c13db
 
 
 
30eefab
 
e8c13db
30eefab
e8c13db
 
 
 
 
 
 
 
 
 
 
30eefab
e8c13db
00836ce
e8c13db
00836ce
e8c13db
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import torch
import joblib
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import requests
import gradio as gr
import cv2
import os

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# My model from Collab (unchanged)
class ImageAuthenticityClassifier(nn.Module):
  def __init__(self, backbone, w, b):
    super().__init__()
    self.backbone = backbone

    d = w.shape[0]
    self.head = nn.Linear(d, 1)

    # Load my trained classifier head
    with torch.no_grad():
      self.head.weight.copy_(
          w.unsqueeze(0).to(dtype=self.head.weight.dtype,
                            device=self.head.weight.device)
      )
      bias_tensor = torch.tensor(
          [b],
          dtype=self.head.bias.dtype,
          device=self.head.bias.device,
      )
      self.head.bias.copy_(bias_tensor)


  def forward(self, pixel_values, return_tokens: bool = False):
    outputs = self.backbone(pixel_values=pixel_values)
    hidden = outputs.last_hidden_state

    patch_tokens = hidden[:, 1:, :]
    emb = patch_tokens.mean(dim = 1)
    logits = self.head(emb)     # Apply classifier head to mean patch token embeddings
    prob = torch.sigmoid(logits)

    if (return_tokens):
      return logits, prob, emb, patch_tokens

    return logits, prob, emb


# Load linear classifier head for logistic regression
model_save_path = "logisticRegressionClassifier.joblib"
logisticRegressionClassifier = joblib.load(model_save_path)
coef = logisticRegressionClassifier.coef_
w = torch.from_numpy(coef.squeeze(0)).float()
intercept = logisticRegressionClassifier.intercept_
b = float(intercept[0])


# Load DinoV3 backbone + processor (gated repo via token)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
backbone = AutoModel.from_pretrained("facebook/dinov3-vitb16-pretrain-lvd1689m", token=HF_TOKEN).to(device)
processor = AutoImageProcessor.from_pretrained("facebook/dinov3-vitb16-pretrain-lvd1689m", token=HF_TOKEN,)
image_auth_model = ImageAuthenticityClassifier(backbone, w, b).to(device)


# Inference helper functions (unchanged)
def load_image(online_image_url):
  img = Image.open(requests.get(online_image_url, stream=True).raw).convert("RGB")
  return img

def prepare_pixel_values(img):
  inputs = processor(images=img, return_tensors="pt")
  pixel_values = inputs["pixel_values"].to(device)
  return pixel_values

# Unused
def predict_from_online_url(online_image_url):
  img = load_image(online_image_url)
  pixel_values = prepare_pixel_values(img)

  with torch.no_grad():
      logits, prob, emb = image_auth_model(pixel_values)
  return float(prob[0][0].item())


# Grad-CAM Helper Functions (Unchanged) -------------------
def compute_cam_from_tokens(patch_tokens, pixel_values, patch_size=16):
  # Dimension calculations
  H_in, W_in = pixel_values.shape[-2], pixel_values.shape[-1]
  H_p = H_in // patch_size
  W_p = W_in // patch_size
  num_spatial = H_p * W_p

  # Tokens and grads for all 200 tokens after CLS. Keep only the spatial patch tokens (drop the 4 global tokens at start)
  tokens_all = patch_tokens[0]         # (200, D)
  grads_all = patch_tokens.grad[0]     # (200, D)
  tokens_spatial = tokens_all[-num_spatial:, :]  # (196, D)
  grads_spatial = grads_all[-num_spatial:, :]    # (196, D)

  # Get a single weight per feature dimension averaged over all patches
  weights = grads_spatial.mean(dim=0)           # (D,)

  # For each patch, combine activation and weights to make different importance for each patch, and normalize results.
  cam_per_patch = (tokens_spatial * weights).sum(dim=-1)
  cam_per_patch = torch.relu(cam_per_patch)
  cam_per_patch = cam_per_patch - cam_per_patch.min()
  cam_per_patch = cam_per_patch / (cam_per_patch.max() + 1e-8)  # shape: (N,)


  cam_grid = cam_per_patch.reshape(H_p, W_p)
  cam = cam_grid.unsqueeze(0).unsqueeze(0)  # (1, 1, H_p, W_p)
  cam_up = F.interpolate(
      cam,
      size=(H_in, W_in),
      mode="bilinear",
      align_corners=False,
  )[0, 0]  # (H_in, W_in)

  return cam_up

def grad_cam_from_online_url(online_image_url):
  # Load image and get pixel_values
  img = load_image(online_image_url)
  pixel_values = prepare_pixel_values(img)

  # Run prediction with return_tokens=True
  logits, prob, emb, patch_tokens = image_auth_model(pixel_values, return_tokens=True)
  ai_prob = float(prob[0][0].item())
  target_logit = logits[0, 0]

  image_auth_model.zero_grad()

  if patch_tokens.grad is not None:
      patch_tokens.grad.zero_()

  patch_tokens.retain_grad()
  target_logit.backward(retain_graph=True) # Finds d_target_logit/d_patch_tokens in patch_tokens.grad()

  # Compute Grad-CAM heatmap
  cam_up = compute_cam_from_tokens(patch_tokens, pixel_values)
  cam_np = cam_up.detach().cpu().numpy()
  orig_np = np.array(img).astype(np.float32) / 255.0
  H0, W0, _ = orig_np.shape

  cam = cam_np.astype(np.float32)
  if cam.shape != (H0, W0):
      cam_t = torch.from_numpy(cam).unsqueeze(0).unsqueeze(0)
      cam_t = F.interpolate(cam_t, size=(H0, W0), mode="bilinear", align_corners=False)
      cam = cam_t[0, 0].cpu().numpy()

  cam_uint8 = np.uint8(cam * 255)
  heatmap_bgr = cv2.applyColorMap(cam_uint8, cv2.COLORMAP_JET)
  heatmap_rgb = cv2.cvtColor(heatmap_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0

  alpha = 0.5
  overlay = alpha * heatmap_rgb + (1.0 - alpha) * orig_np
  overlay = np.clip(overlay, 0.0, 1.0)

  return ai_prob, orig_np, overlay

# -----------------------
# Gradio interface exposing ui_predict as a web UI/API. (AI Generated lol)
# -----------------------
def ui_predict(image_url: str):
    if not image_url:
        return None, "Awaiting input", "Enter an image URL to run a prediction.", None
    try:
        img = load_image(image_url)
        
        ai_prob, img, img_with_gradcam_overlay = grad_cam_from_online_url(image_url)
        percent = ai_prob * 100.0
        verdict = "AI-generated" if ai_prob >= 0.5 else "Not AI-generated"
        headline = verdict
        detail = f"{percent:.1f}% probability the image is AI-generated"
        return img, headline, detail, img_with_gradcam_overlay
    
    except Exception as e:
        return None, "Error", str(e), None

demo = gr.Interface(
    fn=ui_predict,
    inputs=gr.Textbox(
        label="Image URL",
        placeholder="https://example.com/image.jpg",
    ),
    outputs=[
        gr.Image(label="Preview"),
        gr.Textbox(label="Verdict"),
        gr.Textbox(label="Details"),
        gr.Image(label="Grad-CAM"),
    ],
    title="Image Authenticicity",
    description="Paste an image URL to estimate how likely it is AI-generated.",
    api_name="predict",
)

if __name__ == "__main__":
    demo.launch()